Quantcast

Variation in flexural stiffness of the lepidotrichia within and among the soft fins of yellow perch under different preservation techniques.

Research paper by Natalia K NK Taft, Benjamin N BN Taft, Hailey H Henck, Thomas T Mehner

Indexed on: 10 Jun '18Published on: 10 Jun '18Published in: Journal of Morphology



Abstract

Although the ray-finned fishes are named for their bony, segmented lepidotrichia (fin rays), we are only beginning to understand the morphological and functional diversity of this key vertebrate structure. Fin rays support the fin web, and their material properties help define the function of the entire fin. Many earlier studies of fin ray morphology and function have focused on isolated rays, or on rays from only one or two fins. At the same time, relatively little is known about how different preservation techniques affect the material properties of many vertebrate structures, including fin rays. Here, we use three-point bending tests to examine intra- and inter-fin variation in the flexural stiffness of fin rays from yellow perch, Perca flavescens. We sampled fin rays from individuals that were assigned to one of three preservation treatments: fresh, frozen, and preserved with formalin. The flexural stiffness of the fin rays varied within and among fins. Pelvic-fin rays were the stiffest, and pectoral fin rays the least stiff. The fin rays of the dorsal, anal, and caudal fins all had similar stiffness values, which were intermediate relative to those from the paired fins. The flexural stiffness of the fin rays was higher in rays that were at the leading edge of the fin. This variation in flexural stiffness was associated with variation in joint density and the relative length of the unsegmented proximal base of the fin rays. There was no significant difference in flexural stiffness between fresh and frozen specimens. In specimens preserved with formalin, there is a small but significant effect on stiffness in smaller fin rays. © 2018 Wiley Periodicals, Inc.