Variability of pesticide residues in cauliflower units collected from a field trial and market places in Greece.

Research paper by M D H MD Prodhan, Emmanouil-N EN Papadakis, Euphemia E Papadopoulou-Mourkidou

Indexed on: 28 May '16Published on: 28 May '16Published in: Journal of environmental science and health. Part. B, Pesticides, food contaminants, and agricultural wastes


To estimate the variability of pesticide residue levels present in cauliflower units, a total of 142 samples were collected from a field trial of a cooperative farmer, and 120 samples were collected from different market places in Thessaloniki, Greece. The collected samples were extracted using the quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction technique, and the residues were determined by liquid chromatography-tandem mass spectrometry. The developed method was validated by evaluating the accuracy, precision, linearity, limit of detection (LOD), and limit of quantification (LOQ). The average recoveries for all the analytes, derived from the data of control samples fortified at 0.01, 0.05, 0.1, and 0.2 mg/kg, ranged from 74 to 110% with a relative standard deviation of ≤8%. The correlation coefficient (R(2)) was ≥0.997 for all the analytes using matrix-matched calibration standards. The LOD values ranged from 0.001 to 0.003 mg/kg, and the LOQ was determined at 0.01 mg/kg for all the sought analytes. The matrix effect was found to be at a considerable level, especially for cypermethrin and deltamethrin, amounting to +90% and +145%, respectively. For the field samples, the unit-to-unit variability factors (VFs) calculated for cypermethrin and deltamethrin were 2.38 and 2.32, respectively, while the average VF for the market basket samples was 5.11. In the market basket samples, residues of cypermethrin, deltamethrin, chlorpyrifos, and indoxacarb were found at levels ≥LOQ and their respective VFs were 7.12, 5.67, 5.28, and 2.40.