Vacancy-mediated complex phase selection in high entropy alloys

Research paper by Prashant Singh, Srinivasa Thimmaiah, Bryce Thoeny, Pratik K. Ray, A. V. Smirnov, Duane D. Johnson, Matthew J. Kramer

Indexed on: 25 Dec '19Published on: 23 Dec '19Published in: arXiv - Physics - Materials Science


Phase selection in Ti-Zr-Hf-Al high-entropy alloys was investigated by in-situ high-energy x-ray diffraction, single-crystal x-ray diffraction, and KKR-CPA electronic-structure methods that address disorder and vacancies, predicting formation enthalpy and chemical short-range order (SRO). Samples with varying Al content were synthesized, characterized, and computationally assessed to ascertain the composition-dependent phase selection, as increased Al content often acts as a stabilizer of a body-centered-cubic structure. Equiatomic TiZrHfAl was especially interesting due to its observed bcc superstructure - a variant of $\gamma$-brass with 4 vacancies per cell (not 2 as in $\gamma$-brass). We highlight how vacancy ordering mediates selection of this variant of $\gamma$-brass, which is driven by vacancy-atom SRO that dramatically suppress all atomic SRO. As vacancies are inherent in processing refractory systems, we expect that similar discoveries await in other high entropy alloys or in revisiting older experimental data.