Using permutation tests to enhance causal inference in interrupted time series analysis

Research paper by Ariel Linden DrPH

Indexed on: 28 Feb '18Published on: 20 Feb '18Published in: Journal of Evaluation in Clinical Practice


Interrupted time series analysis (ITSA) is an evaluation methodology in which a single treatment unit's outcome is studied serially over time and the intervention is expected to “interrupt” the level and/or trend of that outcome. The internal validity is strengthened considerably when the treated unit is contrasted with a comparable control group. In this paper, we introduce a robustness check based on permutation tests to further improve causal inference.We evaluate the effect of California's Proposition 99 for reducing cigarette sales by iteratively casting each nontreated state into the role of “treated,” creating a comparable control group using the ITSAMATCH package in Stata, and then evaluating treatment effects using ITSA regression. If statistically significant “treatment effects” are estimated for pseudotreated states, then any significant changes in the outcome of the actual treatment unit (California) cannot be attributed to the intervention. We perform these analyses setting the cutpoint significance level to P > .40 for identifying balanced matches (the highest threshold possible for which controls could still be found for California) and use the difference in differences of trends as the treatment effect estimator.Only California attained a statistically significant treatment effect, strengthening confidence in the conclusion that Proposition 99 reduced cigarette sales.The proposed permutation testing framework provides an additional robustness check to either support or refute a treatment effect identified in for the true treated unit in ITSA. Given its value and ease of implementation, this framework should be considered as a standard robustness test in all multiple group interrupted time series analyses.