Quantcast

Uropathogenic Escherichia coli induces extrinsic and intrinsic cascades to initiate urothelial apoptosis.

Research paper by David J DJ Klumpp, Matthew T MT Rycyk, Michael C MC Chen, Praveen P Thumbikat, Shomit S Sengupta, Anthony J AJ Schaeffer

Indexed on: 24 Aug '06Published on: 24 Aug '06Published in: Infection and immunity



Abstract

A murine model of urinary tract infection identified urothelial apoptosis as a key event in the pathogenesis mediated by uropathogenic Escherichia coli (UPEC), yet the mechanism of this important host response is not well characterized. We employed a culture model of UPEC-urothelium interactions to examine the biochemical events associated with urothelial apoptosis induced by the UPEC strain NU14. NU14 induced DNA cleavage within 5 h that was inhibited by the broad caspase inhibitor ZVAD, and urothelial caspase 3 activity was induced within 3 h of exposure to type 1 piliated NU14 and was dependent upon interactions mediated by the type 1 pilus adhesin FimH. Flow cytometry experiments using chloromethyl-X-rosamine and Indo-1 revealed FimH-dependent mitochondrial membrane depolarization and elevated [Ca(2+)](in), respectively, indicating activation of the intrinsic apoptotic pathway. Consistent with this possibility, overexpression of Bcl(XL) inhibited NU14 activation of caspase 3. Immunoblotting, caspase inhibitors, and caspase activity assays implicated both caspase 2 and caspase 8 in apoptosis, suggesting the involvement of the intrinsic and extrinsic apoptotic cascades. To reconcile the apparent activation of both extrinsic and intrinsic pathways, we examined Bid-green fluorescent protein localization and observed translocation from the cytosol to mitochondria in response to either NU14 or purified FimH. These data suggest that FimH acts as a tethered toxin of UPEC that activates caspase-dependent urothelial apoptosis via direct induction of the extrinsic pathway and that the intrinsic pathway is activated indirectly as a result of coupling by caspase 8-mediated Bid cleavage.