# Upper Triangular Operator Matrices, SVEP, and Property (w)

Research paper by **Mohammad H. M. Rashid**

Indexed on: **09 Mar '19**Published on: **06 Mar '19**Published in: **Acta Mathematica Vietnamica**

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join Sparrho today to stay on top of science

Discover, organise and share research that matters to you

Join for free

#### Abstract

When \(A\in \mathscr{L}(\mathbb {X})\) and \(B\in \mathscr{L}(\mathbb {Y})\) are given, we denote by MC an operator acting on the Banach space \(\mathbb {X}\oplus \mathbb {Y}\) of the form \(M_{C}=\left (\begin {array}{cccccccc} A & C \\ 0 & B \\ \end {array}\right ) \). In this paper, first we prove that σw(M0) = σw(MC) ∪{S(A∗) ∩ S(B)} and \(\mathbf {\sigma }_{aw}(M_{C})\subseteq \mathbf {\sigma }_{aw}(M_{0})\cup S_{+}^{*}(A)\cup S_{+}(B)\). Also, we give the necessary and sufficient condition for MC to be obeys property (w). Moreover, we explore how property (w) survive for 2 × 2 upper triangular operator matrices MC. In fact, we prove that if A is polaroid on \(E^{0}(M_{C})=\{\lambda \in \text {iso}\sigma (M_{C}):0<\dim (M_{C}-\lambda )^{-1}\}\), M0 satisfies property (w), and A and B satisfy either the hypotheses (i) A has SVEP at points \(\mathbf {\lambda }\in \mathbf {\sigma }_{aw}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(A)\) and A∗ has SVEP at points \(\mu \in \mathbf {\sigma }_{w}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(A)\), or (ii) A∗ has SVEP at points \(\mathbf {\lambda }\in \mathbf {\sigma }_{w}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(A)\) and B∗ has SVEP at points \(\mu \in \mathbf {\sigma }_{w}(M_{0})\setminus \mathbf {\sigma }_{SF_{+}}(B)\), then MC satisfies property (w). Here, the hypothesis that points λ ∈ E0(MC) are poles of A is essential. We prove also that if S(A∗) ∪ S(B∗), points \(\mathbf {\lambda }\in {E_{a}^{0}}(M_{C})\) are poles of A and points \(\mu \in {E_{a}^{0}}(B)\) are poles of B, then MC satisfies property (w). Also, we give an example to illustrate our results.