Quantcast

Universal quantum gates on microwave photons assisted by circuit quantum electrodynamics

Research paper by Ming Hua, Ming-Jie Tao, Fu-Guo Deng

Indexed on: 31 Jul '14Published on: 31 Jul '14Published in: Quantum Physics



Abstract

Based on a microwave-photon quantum processor with two superconducting resonators coupled to one transmon qutrit, we construct the controlled-phase (c-phase) gate on microwave-photon-resonator qudits, by combination of the photon-number-dependent frequency-shift effect on the transmon qutrit by the first resonator and the resonant operation between the qutrit and the second resonator. This distinct feature provides us a useful way to achieve the c-phase gate on the two resonator qudits with a higher fidelity and a shorter operation time, compared with the previous proposals. The fidelity of our c-phase gate can reach 99.51% within 93 ns. Moreover, our device can be extended easily to construct the three-qudit gates on three resonator qudits, far different from the existing proposals. Our controlled-controlled-phase gate on three resonator qudits is accomplished with the assistance of a transmon qutrit and its fidelity can reach 92.92% within 124.64 ns.