Universal fault-tolerant quantum computation with only transversal gates and error correction.

Research paper by Adam A Paetznick, Ben W BW Reichardt

Indexed on: 17 Sep '13Published on: 17 Sep '13Published in: Physical review letters


Transversal implementations of encoded unitary gates are highly desirable for fault-tolerant quantum computation. Though transversal gates alone cannot be computationally universal, they can be combined with specially distilled resource states in order to achieve universality. We show that "triorthogonal" stabilizer codes, introduced for state distillation by Bravyi and Haah [Phys. Rev. A 86, 052329 (2012)], admit transversal implementation of the controlled-controlled-Z gate. We then construct a universal set of fault-tolerant gates without state distillation by using only transversal controlled-controlled-Z, transversal Hadamard, and fault-tolerant error correction. We also adapt the distillation procedure of Bravyi and Haah to Toffoli gates, improving on existing Toffoli distillation schemes.