Uniform iron oxide hollow spheres for high-performance delivery of insoluble anticancer drugs.

Research paper by Yichen Y Zhu, Jie J Lei, Ye Y Tian

Indexed on: 03 Apr '14Published on: 03 Apr '14Published in: Dalton Transactions


As an intrinsic characteristic of many anticancer drugs, low solubility in physiological conditions limits the usage of these active ingredients in clinics. To overcome this bottleneck, we attempt to design and construct a high-performance magnetic-targeted delivery system based on uniform iron oxide hollow spheres. Via a facile one-pot solvothermal route, well-defined iron oxide hollow spheres were prepared with inexpensive inhesion. Compared with previously reported mesoporous Fe3O4 nanoparticles, our iron oxide hollow spheres have a larger void space giving the structures a higher storage capacity for guest molecules. In our present work, camptothecin (CPT) was selected as a model insoluble anticancer drug to confirm the efficiency of drug-loading and chemotherapy in vitro. Detailed anticancer efficacy was further investigated by using MTT assays and microscope imaging methods, indicating that these iron oxide hollow spheres are promising for insoluble drug delivery.