Quantcast

Uncovering the profile of somatic mtDNA mutations in Chinese colorectal cancer patients.

Research paper by Cheng-Ye CY Wang, Hui H Li, Xiao-Dan XD Hao, Jia J Liu, Jia-Xin JX Wang, Wen-Zhi WZ Wang, Qing-Peng QP Kong, Ya-Ping YP Zhang

Indexed on: 09 Jul '11Published on: 09 Jul '11Published in: PloS one



Abstract

In the past decade, a high incidence of somatic mitochondrial DNA (mtDNA) mutations has been observed, mostly based on a fraction of the molecule, in various cancerous tissues; nevertheless, some of them were queried due to problems in data quality. Obviously, without a comprehensive understanding of mtDNA mutational profile in the cancerous tissue of a specific patient, it is unlikely to disclose the genuine relationship between somatic mtDNA mutations and tumorigenesis. To achieve this objective, the most straightforward way is to directly compare the whole mtDNA genome variation among three tissues (namely, cancerous tissue, para-cancerous tissue, and distant normal tissue) from the same patient. Considering the fact that most of the previous studies on the role of mtDNA in colorectal tumor focused merely on the D-loop or partial segment of the molecule, in the current study we have collected three tissues (cancerous, para-cancerous and normal tissues) respectively recruited from 20 patients with colorectal tumor and completely sequenced the mitochondrial genome of each tissue. Our results reveal a relatively lower incidence of somatic mutations in these patients; intriguingly, all somatic mutations are in heteroplasmic status. Surprisingly, the observed somatic mutations are not restricted to cancer tissues, for the para-cancer tissues and distant normal tissues also harbor somatic mtDNA mutations with a lower frequency than cancerous tissues but higher than that observed in the general population. Our results suggest that somatic mtDNA mutations in cancerous tissues could not be simply explained as a consequence of tumorigenesis; meanwhile, the somatic mtDNA mutations in normal tissues might reflect an altered physiological environment in cancer patients.