Quantcast

Twisted magnetic flux tubes in the solar wind

Research paper by Teimuraz Zaqarashvili, Zoltán Vörös, Yasuhito Narita, Roberto Bruno

Indexed on: 03 Feb '14Published on: 03 Feb '14Published in: arXiv - Astrophysics - Solar and Stellar Astrophysics



Abstract

Magnetic flux tubes in the solar wind can be twisted as they are transported from the solar surface, where the tubes are twisted owing to photospheric motions. It is suggested that the twisted magnetic tubes can be detected as the variation of total (thermal+magnetic) pressure during their passage through observing satellite. We show that the total pressure of several observed twisted tubes resembles the theoretically expected profile. The twist of isolated magnetic tube may explain the observed abrupt changes of magnetic field direction at tube walls. We have also found some evidence that the flux tube walls can be associated with local heating of the plasma and elevated proton and electron temperatures. For the tubes aligned with the Parker spiral, the twist angle can be estimated from the change of magnetic field direction. Stability analysis of twisted tubes shows that the critical twist angle of the tube with a homogeneous twist is 70$^0$, but the angle can further decrease owing to the motion of the tube with regards to the solar wind stream. The tubes with a stronger twist are unstable to the kink instability, therefore they probably can not reach 1 AU.