Transmission electron microscopy analysis of epithelial basement membrane repair in rabbit corneas with haze.

Research paper by Andre A M AA Torricelli, Vivek V Singh, Vandana V Agrawal, Marcony R MR Santhiago, Steven E SE Wilson

Indexed on: 23 May '13Published on: 23 May '13Published in: Investigative ophthalmology & visual science


To assess the ultrastructure of the epithelial basement membrane using transmission electron microscopy (TEM) in rabbit corneas with and without subepithelial stroma opacity (haze).Two groups of eight rabbits each were included in this study. Photorefractive keratectomy (PRK) was performed using an excimer laser. The first group had -4.5-diopter (-4.5D) PRK and the second group had -9.0D PRK. Contralateral eyes were unwounded controls. Rabbits were sacrificed at 4 weeks after surgery. Immunohistochemical analysis was performed to detect the myofibroblast marker α-smooth muscle actin (SMA). TEM was performed to analyze the ultrastructure of the epithelial basement membrane and stroma.At 4 weeks after PRK, α-SMA+ myofibroblasts were present at high density in the subepithelial stroma of rabbit eyes that had -9.0D PRK, along with prominent disorganized extracellular matrix, whereas few myofibroblasts and little disorganized extracellular matrix were noted in eyes that had -4.5D PRK. The epithelial basement membrane was irregular and discontinuous and lacking typical morphology in all corneas at 1 month after -9D PRK compared to corneas at 1 month in the -4.5D PRK group.The epithelial basement membrane acts as a critical modulator of corneal wound healing. Structural and functional defects in the epithelial basement membrane correlate to both stromal myofibroblast development from precursor cells and continued myofibroblast viability, likely through the modulation of epithelial-stromal interactions mediated by cytokines. Prolonged stromal haze in the cornea is associated with abnormal regeneration of the epithelial basement membrane.