Transformation of alfalfa with a bacterial fusion gene, Mannheimia haemolyticaA1 leukotoxin50-gfp: Response with Agrobacterium tumefaciens strains LBA4404 and C58

Research paper by Asma Ziauddin, Raymond W.H. Lee, Reggie Lo, Patricia Shewen, Judith Strommer

Indexed on: 01 Dec '04Published on: 01 Dec '04Published in: Plant cell, tissue and organ culture


Alfalfa transformed with a portion of the leukotoxin gene from Mannheimia haemolytica was produced to test the feasibility of developing an edible vaccine capable of protecting cattle from pneumonic pasteurellosis. Leukotoxin (Lkt), has been identified as an important protective antigen of M. haemolytica, and a fragment, Lkt50, was shown to produce toxin-neutralizing antibodies in rabbits. The construct chosen for introduction into alfalfa carried lkt50 fused to a green fluorescent protein reporter gene, mgfp5-ER. The fusion gene was driven by either the cauliflower mosaic virus 35S promoter (35S) or the promoter from a rubisco small subunit (rbcS-3A) gene of pea. The constructs were introduced into alfalfa RSY27 germplasm using two Agrobacterium tumefaciens strains, LBA4404 and C58, producing a number of transformed lines with both A. strains. Although strain C58 had a slower initial response and produced less callus than strain LBA4404, it resulted in higher numbers of transformed embryos and plants. In total, 30 alfalfa lines (91% of those analyzed), each derived from a separate transformation event, produced detectable levels of Lkt50-GFP. Western analysis with anti-Lkt+66 antiserum revealed the presence of both full-length and truncated polypeptides in plants kept in magenta boxes, while plants transferred to the greenhouse produced only the full-length product. Immunoblotting with anti-GFP antiserum provided evidence that part of the GFP moiety was lost in the truncated protein. Southern blot analysis indicated a low number of insertion sites per event.