Quantcast

Toner for electrostatic image development

Imported: 06 Mar '17 | Published: 28 Jul '09

Akihiro Eida, Jun Shimizu

USPTO - Utility Patents

Abstract

The present invention relates to a toner for electrostatic image development, obtainable by a process including the steps of:

    • (I) melt-kneading a raw material mixture containing a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing the cooled mixture; and
    • (II) further pulverizing a pulverized product obtained in the step (I) in the presence of an external additive containing a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment, and classifying the pulverized product; and a process for preparing the toner.

Description

FIELD OF THE INVENTION

The present invention relates to a toner for electrostatic image development used, for instance, for the development of a latent image formed in electrophotography, electrostatic recording method, electrostatic printing method or the like, and a process for preparing the same.

BACKGROUND OF THE INVENTION

JP2002-14487 A discloses a technique of a toner prepared by adding an external additive containing a positively chargeable silica and a negatively chargeable silica to a toner matrix containing a fluorine-containing polymer, a polyester and a colorant, whereby the aggregation of the toner particles themselves can be suppressed, and image properties can be stabilized upon continuous use under low-humidity, low-temperature conditions.

JP-A-Hei-11-202551 discloses a technique relating to a process for preparing a color toner including the steps of pulverizing a mixture of a melt-kneaded mixture containing a resin binder, a wax and an organic chromatic colorant with fine inorganic oxide particles, and classifying the resulting pulverized product, whereby the feed of a releasing agent to a heat roller can be made as little as possible, thereby obtaining excellent color fixed images.

SUMMARY OF THE INVENTION

The present invention relates to a toner for electrostatic image development, obtainable by a process including the steps of:

(I) melt-kneading a raw material mixture containing a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing the cooled mixture; and

(II) further pulverizing a pulverized product obtained in the step (I) in the presence of an external additive containing a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment, and classifying the pulverized product; and

a process for preparing the toner.

DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to a toner for electrostatic image development capable of obtaining a stable image density even in a high-image quality high-speed developer device having resolution of 1200 dpi or more, thereby suppressing background fog, and also having excellent dot reproducibility not only at the initial stage of printing but also during durability printing, and a process for preparing such a toner.

According to the present invention, a toner for electrostatic image development capable of obtaining a stable image density even in a high-image quality high-speed developer device having resolution of 1200 dpi or more, thereby suppressing background fog, and also having excellent dot reproducibility not only at the initial stage of printing but also during durability printing, and a process for preparing such a toner can be provided.

These and other advantages of the present invention will be apparent from the following description.

In the trends of widespread use of full color printers and miniaturization and speeding up thereof, there are increasing demands for high image qualities and high durability of full color toners. Especially, in a high-image quality high-speed developer device having resolution of 1200 dpi or more, not only improvement in the stability of the image density and suppression of the background fog but also stability in dot reproducibility directly influencing resolution at the initial level as well as during the course of a long-term printing for numerous times (hereinafter also referred as during durability printing) have been required (hereinafter also referred to as durability printing property).

In a high-speed full color developer device, it has been tried that to use an external additive containing positively chargeable fine inorganic particles and negatively chargeable fine inorganic particles for the quick initial rise of charging of the toner and suppression of toner aggregation during the durability printing to be effective for stable image quality and suppression of background fog (JP2002-14487 A). However, it has been found in the full color developer device having high speed and high resolution requiring an even higher level of charging stability that the influence of the aggregation of the fine inorganic particles cannot be eliminated depending upon the techniques specifically disclosed therein, so that the charging stability is insufficient especially in the dot reproducibility during the durability printing.

On the other hand, as a means of stabilizing the adhesion of an external additive to a toner, a toner obtainable by properly roughly pulverizing a melt-kneaded mixture containing a resin binder and the like, and mixing the roughly pulverized product with fine inorganic oxide particles is proposed (JP-A-Hei-11-202551). Therefore, the present inventors have remarked on the technique, and tried to stabilize the adhesion state of the external additive to the toner surface, thereby stabilizing the charging state of the toner. However, it has been found that the toners specifically disclosed in Examples of JP-A-Hei-11-202551 have insufficient image densities during the durability printing, suppression of background fog, and dot reproducibility in not only a developer device having high speed and high resolution but also a developer device having low speed and low resolution.

The present inventors have further made various studies. As a result, they have found a toner obtainable by roughly pulverizing a melt-kneaded mixture of raw materials such as a resin binder, and pulverizing and classifying the resulting roughly pulverized product in the presence of an external additive containing a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment shows an unexpected state that the dispersion state of the negative chargeable inorganic oxide and the positively chargeable inorganic oxide on the toner surface is more excellent than the adhesion stability of the inorganic oxides on the toner surface.

Moreover, the present inventors have found that the toner shows high stability beyond expectation in image density at the initial stage and during the durability printing in not only a developer device having low speed and low resolution but also a developer device having high speed and high resolution, whereby background fogging can be favorably suppressed, and further exhibiting very high dot reproducibility.

One of the features of the toner for electrostatic image development resides in that the toner is prepared by a process including the steps of:

    • (I) melt-kneading a raw material mixture containing a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing (first-pulverizing) the cooled mixture; and
    • (II) further pulverizing (second-pulverizing) a pulverization product obtained in the step (I) in the presence of an external additive containing a negatively chargeable inorganic oxide subjected to hydrophobic treatment (hereinafter also referred to as inorganic oxide A) and a positively chargeable inorganic oxide subjected to hydrophobic treatment (hereinafter also referred to as inorganic oxide B), and classifying the pulverized product.

The external additive as used in the present invention refers to fine particles other than the toner, which is added in the step after the melt-kneading of the raw material mixture containing a resin binder and the like.

In addition, the term negatively chargeable inorganic oxide refers to one having a negative triboelectric charge when the inorganic oxide and iron powder is subjected to triboelectric charging, and the term positively chargeable inorganic oxide refers to one having a positive triboelectric charge when the inorganic oxide and iron powder is subjected to triboelectric charging. The triboelectric charge of the inorganic oxide is determined with a blowoff-type triboelectric charge measuring apparatus. In the present invention, the triboelectric charge of the negatively chargeable inorganic oxide (inorganic oxide A) is preferably from 10 to 500 C/g, and more preferably from 20 to 400 C/g. In addition, the triboelectric charge of the positively chargeable inorganic oxide (inorganic oxide B) is preferably from 10 to 500 C/g, and more preferably from 20 to 400 C/g.

The inorganic oxide usable as the external additive in the present invention is preferably, for instance, an inorganic oxide selected from the group consisting of silica, titania, alumina, zinc oxide, magnesium oxide, cerium oxide, iron oxide, copper oxide and tin oxide. Among them, it is preferable that at least one of the inorganic oxides is silica from the viewpoint of giving chargeability and fluidity.

As the silica, those prepared by a known method can be used. Those prepared by dry method or high-temperature hydrolysis method are preferable from the viewpoint of dispersibility of the silica.

The above-mentioned inorganic oxide A is a negatively chargeable inorganic oxide subjected to hydrophobic treatment.

The inorganic oxide subjected to hydrophobic treatment as used herein refers to an inorganic oxide having a degree of hydrophobicity of 40 or more, preferably from 50 to 99, and more preferably from 60 to 98, as determined by a methanol titration method. The determination of the degree of hydrophobicity according to the methanol titration method is more specifically carried out by the following method. Specifically, 0.2 g of an inorganic oxide of which degree of hydrophobicity is to be determined is placed in a glass container having an inner diameter of 7 cm and a capacity of 2 liters or more containing 100 ml of ion-exchanged water, and the mixture is stirred with a magnetic stirrer. The procedures of placing a tip end of a burette containing methanol into the liquid, adding 20 ml of methanol dropwise thereto while stirring, stopping the stirring after 30 seconds, and observing the state after one minute from stopping the stirring are repeatedly carried out. The value obtained by the following formula is calculated when a total amount of methanol when the inorganic oxide no longer floats on the water surface after one minute from stopping the stirring is defined as Y (ml). The determination was made by temperature-controlling water inside the beaker (glass container) to 201 C.
Degree of Hydrophobicity =(Y/(100+Y))100

The hydrophobic treatment agent for giving negative chargeability to the inorganic oxide is not particularly limited. The hydrophobic treatment agent includes silane coupling agents such as hexamethyl disilazane (HMDS), dimethyl dichlorosilane (DMDS), isobutyl trimethoxysilane, and octyl silane; silicone oil treatment agents such as dimethyl silicone oil; and the like. In the present invention, it is preferable that at least one of the hydrophobic treatment agents is selected from the silane coupling agents from the viewpoint of reduction in toner aggregation during the pulverizing step in the step (II).

Supposing that the combination of the hydrophobic treatment agent and the inorganic oxide is listed as hydrophobic treatment agent-inorganic oxide, the preferred combination in the inorganic oxide A includes hexamethyl disilazane (HMDS)-silica, dimethyl dichlorosilane (DMDS)-silica, silicone oil-silica, a mixture of HMDS and silicone oil-silica, isobutyl trimethoxysilane-titania, silicone oil-titania, octyl silane-titania, and the like. Among them, HMDS-silica, DMDS-silica, silicone oil-silica, a mixture of HMDS and silicone oil-silica, and isobutyl trimethoxysilane-titania are preferable, HMDS-silica, DMDS-silica, silicone oil-silica, and a mixture of HMDS and silicone oil-silica are more preferable, even more preferably HMDS-silica and DMDS-silica, and even more preferably HMDS-silica.

As the inorganic oxide A mentioned above subjected to hydrophobic treatment, those commercially available can be used.

The preferred commercially available products of HMDS-silica include H3004, H2000, HDK H30TM, HDK H20TM, HDK H13TM, and HDK H05TM (hereinabove commercially available from Wacker Chemicals), TS530 (hereinabove commercially available from Cabot Corporation), RX300, RX200, RX50, and NAX-50 (hereinabove commercially available from Nippon Aerosil) and the like.

The preferred commercially available products of DMDS-silica include R976, R974, and R972 (hereinabove commercially available from Nippon Aerosil) and the like.

The preferred commercially available products of silicone oil-silica include HDK H30TD, HDK H20 TD, HDK H13TD, and HDK H05TD (hereinabove commercially available from Wacker Chemicals), TS720 (hereinabove commercially available from Cabot Corporation), RY-50 and NY-50 (hereinabove commercially available from Nippon Aerosil), and the like.

The preferred commercially available products of a mixture of HMDS and silicone oil-silica include HDK H30TX, HDK H20TX, HDK H13TX, HDK H05TX (hereinabove commercially available from Wacker Chemicals), and the like.

The preferred commercially available products of isobutyl trimethoxysilane-titania include JMT-150IB (hereinabove commercially available from Tayca, and the like.

The treated amount of the hydrophobic treatment agent in the inorganic oxide A is not particularly limited, as long as the treated amount is in an extent that the desired negative triboelectric charge and degree of hydrophobicity are obtained. It is preferable that the treated amount per surface area of the inorganic oxide A is preferably from 1 to 7 mg/m2.

The above-mentioned inorganic oxide B is a positively chargeable inorganic oxide subjected to hydrophobic treatment.

The hydrophobic treatment agent for giving positive chargeability to the inorganic oxide is not particularly limited. The hydrophobic treatment agent includes aminosilanes; silicone oil treatment agents such as amino-modified silicone oils and epoxy-modified silicone oils; and the like. Among them, the amino-modified silicone oils are preferable from the viewpoint of environmental stability of the triboelectric charges.

Supposing that the combination of the hydrophobic treatment agent and the inorganic oxide is listed as hydrophobic treatment agent-inorganic oxide, the preferred combination in the inorganic oxide B includes amino-modified silicone oil-silica, aminosilane-silica, epoxy-modified silicone oil-silica and the like. The amino-modified silicone oil-silica is more preferable.

The treated amount of the hydrophobic treatment agent in the inorganic oxide B is not particularly limited, as long as the treated amount is in an extent that the desired positive triboelectric charge and degree of hydrophobicity are obtained. It is preferable that the treated amount per surface area of the inorganic oxide B is preferably from 1 to 7 mg/m2.

As the inorganic oxide B mentioned above subjected to hydrophobic treatment, those commercially available can be used.

The preferred commercially available products of amino-modified silicone oil-silica include HVK2150, HDK3050, HDK H30TA, HDK H13TA, HDK H05TA (commercially available from Wacker Chemicals) and the like.

It is preferable that at least one of the inorganic oxide A and the inorganic oxide B is a hydrophobic silica. Therefore, the preferred combination of the inorganic oxide A and the inorganic oxide B [inorganic oxide A/inorganic oxide B] is one that contains HMDS-silica/amino-modified silicone oil-silica or DMDS-silica/amino-modified silicone oil-silica, and more preferably one that contains DMDS-silica/amino-modified silicone oil-silica.

The average particle size of the inorganic oxide A and the inorganic oxide B is preferably 4 nm or more, and more preferably 6 nm or more, from the viewpoint of having excellent adhesion to the roughly pulverized product and preventing the inorganic oxide to be completely embedded in the toner. The average particle size of the inorganic oxide is preferably 100 nm or less, more preferably 80 nm or less, even more preferably 60 nm or less, and even more preferably 40 nm or less, from the viewpoint of fluidity and impartment of chargeability. The average particle size of the inorganic oxide is preferably from 4 to 100 nm, more preferably from 6 to 80 nm, even more preferably from 6 to 40 nm, and even more preferably from 6 to 20 nm, from the overall viewpoint. In the present invention, the average particle size of the inorganic oxide refers to a number-average particle size, which is an average taken from particle sizes of 500 particles determined from a photograph taken with a scanning electron microscope (SEM) of the inorganic oxide.

It is preferable that each of the average particle sizes of the inorganic oxide A and the inorganic oxide B is within the range as defined above, and it is more preferable that both the average particle sizes are from 6 to 20 nm. In addition, it is even more preferable that one of the average particle size falls within the range of from 8 to 20 nm, and the other falls within the range of from 6 to 12 nm. In this case, it is preferable that the difference in average particle sizes is 2 nm or more, more preferably from 3 to 14 nm, and even more preferably from 4 to 10 nm.

The weight ratio of the inorganic oxide A to the inorganic oxide B (inorganic oxide A/inorganic oxide B) for a negatively chargeable toner is preferably from 95/5 to 5/95, more preferably from 90/10 to 30/70, and even more preferably from 90/10 to 50/50, and the weight ratio for a positively chargeable toner is preferably from 5/95 to 95/5, more preferably from 10/90 to 80/20, and even more preferably from 20/80 to 60/40.

The total formulation amount of the inorganic oxide A and the inorganic oxide B is preferably from 0.1 to 10 parts by weight, and more preferably from 0.5 to 5 parts by weight, based on 100 parts by weight of the pulverized product obtained in the step (I), from the viewpoint of environmental stability.

In the external additive which is present during the step (II) may contain fine particles other than the above-mentioned inorganic oxides A and B, for instance, inorganic oxide not subjected to hydrophobic treatment or resin fine particles, having an average particle size of preferably from 8 nm to 1 m, more preferably from 10 to 500 nm, and even more preferably from 15 to 300 nm, within the range which would not hinder the effects by the inorganic oxides A and B. However, the total content of the inorganic oxides A and B in the external additive is preferably from 50 to 100% by weight, more preferably from 70 to 100% by weight, even more preferably from 90 to 100% by weight, and even more preferably from 100% by weight, from the viewpoint of environmental stability.

The toner of the present invention can be prepared by a process including the step of:

    • (I) melt-kneading a raw material mixture, cooling the melt-kneaded mixture, and pulverizing (first-pulverizing) the cooled mixture; and
    • (II) further pulverizing (second-pulverizing) the pulverized product obtained in the step (I) in the presence of an external additive containing an inorganic oxide A and an inorganic oxide B, and classifying the pulverized product.

In the step (I), as the raw material mixture to be melt-kneaded, there is used raw material mixture containing a resin binder, a releasing agent and a colorant.

The resin binder in the present invention includes polyesters, vinyl resins such as styrene-acrylic resins, epoxy resins, polycarbonates, polyurethanes, hybrid resins containing two or more resin components, and the like. Among them, from the viewpoint of low-temperature fixing ability and transparency, the polyester and the hybrid resin are preferable, and the polyester is more preferable. The content of the polyester is preferably 50% by weight or more, more preferably 65% by weight or more, even more preferably 80% by weight or more, even more preferably 90% by weight or more, and even more preferably 100% by weight, of the resin binder, from the viewpoint of low-temperature fixing ability and transparency.

As the raw material monomers for the polyester, an alcohol component containing dihydric or higher polyhydric alcohols, and a carboxylic acid component containing dicarboxylic or higher polycarboxylic acid compounds such as dicarboxylic or higher polycarboxylic acids, acid anhydrides thereof and esters thereof.

The alcohol component includes dihydric alcohols such as an alkylene (2 or 3 carbon atoms) oxide (average number of moles: 1 to 16) adduct of bisphenol A, such as polyoxypropylene(2.2)-2,2-bis(4-hydroxyphenyl)propane and polyoxyethylene(2.2)-2,2-bis(4-hydroxyphenyl)propane, ethylene glycol, and propylene glycol; and the trihydric or higher polyhydric alcohols such as glycerol and pentaerythritol.

In addition, the carboxylic acid component includes dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, fumaric acid, maleic acid, a substituted succinic acid of which substituent is an alkyl group having 1 to 20 carbon atoms or an alkenyl group having 2 to 20 carbon atoms, such as dodecenylsuccinic acid or octylsuccinic acid; and tricarboxylic or higher polycarboxylic acids such as 1,2,4-benzenetricarboxylic acid (trimellitic acid) and pyromellitic acid; acid anhydrides thereof, alkyl (1 to 8 carbon atoms) esters thereof, and the like.

Further, the alcohol component and the carboxylic acid component may properly contain a monohydric alcohol and a monocarboxylic acid, from the viewpoint of adjusting the molecular weight or the like.

The polyester can be prepared by, for instance, polycondensation of the alcohol component and the carboxylic acid component at a temperature of from 180 to 250 C. in an inert gas atmosphere, in the presence of an esterification catalyst as desired.

The polyester has an acid value of preferably from 0.5 to 60 mg KOH/g, from the viewpoint of the dispersibility of the colorant and chargeability of the toner, and a hydroxyl value of from 1 to 60 mg KOH/g.

In addition, the polyester has a softening point of preferably from 80 to 165 C., and a glass transition temperature of preferably from 50 to 90 C.

In the present invention, the hybrid resin is preferably a resin in which two or more resin components are partially chemically bonded to each other. The hybrid resin may be obtained by using two or more resins as raw materials, or the hybrid resin may be obtained by using a mixture of one resin and raw material monomers for the other resin, or also a mixture of raw material monomers for two or more resins. In order to efficiently obtain a hybrid resin, those obtained from a mixture of raw material monomers of raw material monomers for two or more resins are preferable.

Therefore, it is preferable that the hybrid resin is obtained by mixing raw material monomers for two polymerization resins each having independent reaction paths, preferably raw material monomers for the polyester and raw material monomers for the vinyl resin, and carrying out the two polymerization reactions. Specifically, the hybrid resin disclosed in JP-A-Hei-10-087839 (U.S. Pat. No. 5,908,727) is preferable.

Further, the raw material mixture used in the melt-kneading contains a releasing agent, from the viewpoint of stable adhesion of the external additive on the toner surface in the step (II). As the releasing agent, a wax having a melting point of from 65 to 150 C. is preferable, and the term wax generally refers to a wax as described in Iwanami Rikagaku Jiten (Iwanami Physicochemical Dictionary), Fourth Edition, p. 1407.

The releasing agent in the present invention includes, for instance, synthetic waxes such as polypropylene wax, polyethylene wax and Fischer-Tropsch wax; coal waxes such as montan wax; alcohol waxes; petroleum waxes such as paraffin waxes; waxes containing hydroxy acid ester; and the like. Among them, when the polyester is used as a resin binder, it is preferable that the wax is polypropylene wax and the wax containing hydroxy acid ester, from the viewpoint of dispersibility of the wax into the polyester.

The wax containing hydroxy acid ester includes natural waxes such as carnauba wax and rice wax; synthetic wax containing hydroxy acid ester, such as ceryl--hydroxycerotate, ceryl--hydroxymelissate, and myricyl--hydroxymelissate; and the like. The natural waxes are more preferable, from the viewpoint of securing offset resistance in an even wider temperature range, and carnauba wax is even more preferable.

The content of the releasing agent is preferably 0.5 parts by weight or more, more preferably from 1 to 20 parts by weight, and even more preferably from 1 to 15 parts by weight, based on 100 parts by weight of the resin binder, from the viewpoints of offset resistance and durability.

As the colorants in the present invention, all of the dyes, pigments and the like which are used as colorants for toners can be used. The colorant includes carbon blacks, Phthalocyanine Blue, Permanent Brown F G, Brilliant Fast Scarlet, Pigment Green B, Rhodamine-B Base, Solvent Red 49, Solvent Red 146, Solvent Blue 35, quinacridone, carmine 6B, disazoyellow, and the like. These colorants can be used alone or in admixture of two or more kinds. The toner of the present invention may be any of black toners, color toners and full-color toners. The amount of the colorant used is preferably from 1 to 40 parts by weight, and more preferably from 3 to 10 parts by weight, based on 100 parts by weight of the resin binder.

In the toner of the present invention, additives such as charge control agents, fluidity improvers, electric conductivity modifiers, extenders, reinforcing fillers such as fibrous substances, antioxidants, anti-aging agents, and cleanability improvers may be appropriately added.

The melt-kneading of the raw material mixture can be carried out by, for instance, a closed type kneader, a closed type single-screw or twin-screw extruder, an open-roller type kneader and the like. In the present invention, it is preferable to use an open-roller type kneader, from the viewpoint of improving dot reproducibility during durability printing of the toner. By the use of the open-roller type kneader, the dispersion of the releasing agent in the resin binder is accelerated, so that it is presumed that the adhesion state of the inorganic oxides A and B to the toner is further stabilized. Incidentally, the temperature of the melt-kneading is not particularly limited as long as each of the raw material mixture is sufficiently miscible with each other. It is preferable that the temperature of the melt-kneading is usually from 80 to 140 C.

The open-roller type kneader in the present invention refers to a kneader containing at least two rollers, and a melt-kneading member is an open type, and it is preferable that at least two of the rollers are a heat roller and a cooling roller. The open-roller type kneader can easily dissipate the kneading heat generated during the melt-kneading. In addition, it is preferable that the open-roller type kneader is a continuous type kneader, from the viewpoint of production efficiency.

Further, in the above-mentioned open-roller type kneader, two of the rollers are arranged in parallel closely to each other, and the gap between the rollers is preferably from 0.01 to 5 mm, and more preferably from 0.05 to 2 mm. In addition, structures, sizes, materials and the like of the roller are not particularly limited. Also, the roller surface may be any of smooth, wavy, rugged or other surfaces.

The number of rotation of the roller, i.e. the peripheral speed of the roller, is preferably from 2 to 100 m/min. The peripheral speed of the cooling roller is preferably from 2 to 100 m/min, more preferably from 10 to 60 m/min, and even more preferably from 15 to 50 m/min. In addition, it is preferable that the two rollers have different peripheral speeds from each other, and that the ratio of the peripheral speed of the two rollers (cooling roller/heat roller) is preferably from 1/10 to 9/10, and more preferably from 3/10 to 8/10.

In order that the kneaded product is easily adhered to the heat roller, it is preferable that the temperature of the heat roller is adjusted to be higher than both the temperatures of the softening point of the resin binder and the melting point of the wax, and that the temperature of the cooling roller is adjusted to be lower than both the temperatures of the softening point of the resin binder and the melting point of the wax.

The difference in temperature between the heat roller and the cooling roller is preferably from 60 to 150 C., and more preferably from 80 to 120 C.

Here, the temperature of the roller can be adjusted by a heating medium passing through the inner portion of the roller, and each roller may be divided in two or more portions in the inner portion of the roller, each being connected to heating media of different temperatures.

It is preferable that the temperature of the heat roller, especially the raw material feeding side of the heat roller is adjusted to be higher than both the softening point of the resin binder and the melting point of the wax, more preferably higher than the higher of the softening point of the resin binder and the melting point of the wax by 0 to 80 C., and even more preferably by 5 to 50 C. It is preferable that the temperature of the cooling roller is adjusted to be lower than both of the softening point of the resin binder and the melting point of the wax, more preferably lower than the lower of the softening point of the resin binder and the melting point of the wax by 0 to 80 C., and even more preferably by 40 to 80 C.

Next, the resulting kneaded mixture is cooled to a pulverizable hardness, and subjected to a pulverization (a first pulverization). In the present invention, the first pulverization is a rough pulverization. In this pulverization, the kneaded mixture is pulverized to a size so that the average particle size of the resulting pulverized product (roughly pulverized product) is preferably from 0.03 to 4 mm, more preferably from 0.05 to 2 mm, and even more preferably the above-mentioned average particle size, and a maximum particle size of 5 mm or less, even more preferably the above-mentioned average particle size, and a maximum particle size of 3 mm or less, and even more preferably the average particle size of from 0.05 to 2 mm and the maximum particle size of 3 mm or less.

Here, the average particle size of the roughly pulverized product refers to an average of the maximum length of the projected area when the product is observed with a microscope, and the phrase the maximum particle size of 5 mm or less means all of the toner particles pass through a sieve of which sieve opening is 5 mm.

The pulverizer usable in the rough pulverization includes atomizer, Rotoplex, and the like.

In the present invention, in the subsequent step (II), the roughly pulverized product is pulverized (a second pulverization) in the presence of an external additive containing inorganic oxides A and B, whereby the dot reproducibility during the durability printing of the toner can be even more improved. Such an improvement is presumably due to the fact that the inorganic oxide A and the inorganic oxide B on the toner surface is even more uniformly dispersed and adhered, as compared to a usual method of externally adding an inorganic oxide in the final step of the toner preparation.

In the step (II), when the roughly pulverized product is pulverized in the presence of an external additive containing the inorganic oxides A and B, it is preferable that the roughly pulverized product is mixed with the above-mentioned external additive containing the inorganic oxide A and the inorganic oxide B, and further pulverized, from the viewpoint of further increasing effects for dot reproducibility.

In the mixing of the roughly pulverized product with the external additive in the step (II), it is preferable to use an agitator containing an agitation member such as rotating impeller, from the viewpoint of uniform dispersion of a specified external additive. The number and shape of the rotating impeller may be properly designed according to the scale of the agitator, and it is preferable to use two or more agitation impellers in an agitator. The agitation member is preferably positioned at an upper portion of the mixing member, from the viewpoint of continuous treatment of the pulverized product.

The mixing conditions for the roughly pulverized product with the external additive to be present during the step (II) are not particularly limited, as long as both the components can be sufficiently mixed, and can be properly determined according to the scale of the agitator. When an agitator of a batch-process having a capacity of about 10 liters is used, it is preferable that the mixing is carried out at a rotational speed of from 2000 to 5000 r/min for 30 seconds to 2 minutes or so. In addition, when an agitator of a continuous-process having a capacity of about 5 liters is used, it is preferable that the mixing is carried out at a residence time of from 1 to 60 seconds.

In the present invention, the more sufficiently the roughly pulverized product and the external additive are agitated, the more excellent the dot reproducibility during the durability printing of the toner. As a specific measure, it is preferable that the mixing is carried out until the aggregate of the inorganic oxide is not visually confirmed, and further that the external additive is uniformly dispersed when the roughly pulverized product is observed with a scanning electron microscope (SEM).

In the step (II), when the roughly pulverized product is further pulverized in the presence of the external additive, there can be used a jet mill such as impact type mill; rotary mechanical mill or the like. In the present invention, the jet mill is preferable, from the viewpoint of adhesion stability of the inorganic oxide on the toner surface, and more preferably impact type mill.

The air pressure upon pulverizing when using a jet mill, specifically the pressure of pulverization air introduced into the pulverization nozzle is preferably from 0.2 to 1 MPa, more preferably from 0.3 to 0.8 MPa, and even more preferably from 0.4 to 0.7 MPa.

In the present invention, in order to continuously produce on an industrial scale, it is preferable that the processes from the mixing of the roughly pulverized product with the external additive to the pulverization (a second pulverization) are continuously carried out, i.e. the roughly pulverized product and the external additive are subjected to continuous mixing, and the resulting mixture is continuously subjected to the second pulverization.

The pulverized product obtained by the second pulverization (finely pulverized product) has a volume-average particle size (D50) of preferably 15 m or less, more preferably from 3 to 10 m, and even more preferably from 3 to 8 m.

By classifying the finely pulverized product, the toner can be obtained. The classifier usable in the classification includes air classifiers, rotor type classifiers, sieve classifiers, and the like.

The toner has a volume-average particle size (D50) of preferably from 3.5 to 11 m or less, more preferably from 3.5 to 9 m, and even more preferably from 4 to 8 m.

The toner of the present invention may be those obtainable by a process further including the step, subsequent to the step (II), of:

    • (III) mixing an external additive such as the inorganic oxides A and B usable in the step (II), the other inorganic oxide such as silica, and resin fine particles composed of polytetrafluoroethylene or the like.
      The external additive usable in the step (III) is preferably an inorganic oxide from the viewpoint of giving fluidity. Also, the external additive has an average particle size of preferably 25 nm or more, more preferably 30 nm or more, and even more preferably 35 nm or more, from the viewpoint of preventing embedment into the toner surface, and the external additive has an average particle size of preferably 100 nm or less, more preferably 80 nm or less, and even more preferably 60 nm or less, from the viewpoint of adhesion to the toner surface. The external additive has an average particle size of preferably from 25 to 100 nm, more preferably from 30 to 80 nm, and even more preferably from 35 to 60 nm, from the overall viewpoint. Even more preferably, the average particle size is larger than the average particle size of the external additive to be present during the step (II).

In the mixing of the finely pulverized product or the toner particles obtained after the classifying step with an external additive, it is preferable to use an agitator having an agitation member such as rotary impeller, and an even more preferred agitator includes a Henschel mixer.

The toner of the present invention can exhibit excellent properties in image density, suppression of background fog, and dot reproducibility even in durability printing with not only a low-image quality, low-speed developer device but also a high-image quality, high-speed developer device. Therefore, as the high-image quality, high-speed developer device especially remarkably exhibiting the effects of the present invention, the developer device has resolution of preferably 600 dpi or more, and more preferably from 600 to 1800 dpi, and a printing speed of preferably 60 mm/second or more, and more preferably 80 to 160 mm/second.

The toner of the present invention can be used without particular limitation in any of the development method alone as a developer, or as a nonmagnetic monocomponent developer in the case where fine magnetic material powder is not contained, or as a two-component developer by mixing the toner with a carrier in the case where fine magnetic material powder is contained. The toner of the present invention can be even more suitably used as a toner for nonmagnetic monocomponent development, from the viewpoint obtaining high image quality.

EXAMPLES

The following examples further describe and demonstrate embodiments of the present invention. The examples are given solely for the purposes of illustration and are not to be construed as limitations of the present invention.

[Melting Point of Wax]

A maximum peak temperature for heat of fusion is determined with a sample using a differential scanning calorimeter (DSC 210, manufactured by Seiko Instruments, Inc.), when the sample is treated by raising its temperature to 200 C., cooling the sample at a cooling rate of 10 C./min. to 0 C., and thereafter heating the sample at a heating rate of 10 C./min. Here, the maximum peak temperature is defined as a melting point of a wax.

[Triboelectric Charges of Inorganic Oxide]

The amount 0.01 g of an inorganic oxide and 9.99 g of iron powder carrier having a particle size of from 100 to 200 mesh (sieve opening: 85 to 200 m) are weighed and placed in a 20 ml glass bottle, and the mixture is stirred at 250 r/min with a ball-mill for 10 minutes, to prepare a sample.

The triboelectric charges of the prepared sample are measured by a blow-off type electric charge measuring device equipped with a Faraday cage, a capacitor and an electrometer. Specifically, W (g) of the prepared sample is placed into a brass measurement cell equipped with a stainless screen of 400 mesh (sieve opening: 30 m). Next, after aspirating from a suction opening for 5 seconds, blowing is carried out for 5 seconds under a pressure indicated by a barometric regulator of 0.6 kgf/m2, thereby selectively removing only the inorganic oxide from the cell.

In this case, the voltage of the electrometer after 2 seconds from the start of blowing is defined as V (volt). Here, when the electric capacitance of the capacitor is defined as C (F), the triboelectric charge of the inorganic oxide is calculated by the following equation:
Triboelectric charges (C/g)=(CV)/0.001 W.

  • [Volume-Average Particle Size (D50) of Toner and Finely Pulverized Product]
  • Measuring Apparatus: Coulter Multisizer II (commercially available from Beckman Coulter)
  • Aperture Diameter: 100 m
  • Range of Determined Particle Size: 2 to 60 m
  • Analyzing Software: Coulter Multisizer AccuComp Ver. 1.19 (commercially available from Beckman Coulter)
  • Electrolyte: Isotone II (commercially available from Beckman Coulter)
  • Dispersion: 5% electrolyte of EMULGEN 109P (commercially available from Kao Corporation, polyoxyethylene lauryl ether, HLB: 13.6)
  • Dispersing Conditions: Ten milligrams of a test sample is added to 5 ml of a dispersion, and the resulting mixture is dispersed in an ultrasonic disperser for 1 minute. Thereafter, 25 ml of an electrolyte is added to the dispersion, and the resulting mixture is dispersed in an ultrasonic dispersing apparatus for another 1 minute.
  • Measurement Conditions: One-hundred milliliters of an electrolyte and a dispersion are added to a beaker, and the particle sizes of 30000 particles are determined under the conditions for concentration satisfying that the determination for 30000 particles are completed in 20 seconds, to obtain a volume-average particle size (D50) from its particle size distribution.

Resin Preparation Example 1

The amount 714 g of polyoxypropylene(2.2)-2,2-bis(4-hydroxyphenyl)propane, 663 g of polyoxyethylene(2.2)-2,2-bis(4-hydroxyphenyl)propane, 518 g of isophthalic acid, 70 g of isooctenylsuccinic acid, 80 g of trimellitic acid and 2 g of dibutyltin oxide were reacted while stirring at 210 C. under a nitrogen gas atmosphere until the softening point as determined by ASTM D36-86 reached 120 C., to give a resin A.

Examples 1 to 5, and 7 and Comparative Examples 1 to 4

One-hundred parts by weight of the resin A, 3 parts by weight of a blue colorant (Pigment Blue 15:3), 1 part by weight of polypropylene wax NP-105 (commercially available from MITSUI CHEMICALS, INC., melting point: 140 C.), and 1 part by weight of a negatively chargeable charge control agent BONTRON E-84 (commercially available from Orient Chemical Co., Ltd.) were supplied into a Henschel mixer, and the mixture was mixed at a mixer temperature of 40 C. for 2 minutes, while stirring, to give a raw material mixture. The resulting raw material mixture was melt-kneaded with a continuous-type twin-screw kneader at 100 C., to give a kneaded mixture. The resulting kneaded mixture was cooled in the air, and roughly pulverized with an atomizer (commercially available from Tokyo Atomizer Manufacturing), and the roughly pulverized product was passed through a sieve having a sieve opening of 2 mm, to give a roughly pulverized product having a maximum diameter of 2 mm or less. One-hundred parts by weight of the resulting roughly pulverized product and an external additive a shown in Table 1 were mixed with a Henschel mixer for 1 minute. The roughly pulverized product adhered with an external additive a was finely pulverized with a jet mill pulverizer (commercially available from Nippon Pneumatic Mfg. Co., Ltd.) of which air pressure during the pulverization was adjusted to 0.4 MPa, and the finely pulverized product was further classified, to give a toner having a volume-average particle size (D50) of 7.0 m.

In Example 5 and Comparative Examples 3 and 4, an external additive b shown in Table 1 was further added to 100 parts by weight of the toner particles, and the mixture was mixed with a Henschel mixer for 2 minutes.

Example 6

The same procedures as in Example 5 were carried out except that the raw materials as shown in Table 1 were melt-kneaded with a continuous twin open-roller type kneader Kneadex (commercially available from MITSUI MINING COMPANY, LIMITED) in place of the continuous-type twin-screw kneader, to give a toner.

Incidentally, the continuous twin open-roller type kneader used has a roller having an outer diameter of 0.14 m and an effective length of 0.8 m, and the operating conditions are a rotational speed of a higher rotation side roller (front roller) of 75 r/min, a rotational speed of a lower rotation side roller (back roller) of 50 r/min, and a gap between the rollers of 0.1 mm. The temperature of the heating medium and the cooling medium inside the rollers are as follows. The higher rotation side roller has a temperature at the raw material supplying side of 150 C., and a temperature at the kneaded mixture discharging side of 130 C., and the lower rotation side roller has a temperature at the raw material supplying side of 35 C., and a temperature at the kneaded mixture discharging side of 30 C. In addition, the feeding rate of the raw material mixture was 5 kg/hour, and the average residence time of about 5 minutes.

Incidentally, all the degrees of hydrophobicity of the external additives used in Examples and Comparative Examples were 60 or more.

Test Example 1

A toner was loaded to a printer MicroLine 9500PS (commercially available from Oki Data Corporation, resolution: 1200 dpi1200 dpi, printing speed: 30 ppm (A4 paper sheets fed in width direction, 150 mm/second). A solid image (amount of toner adhesion: 0.7 mg/cm2), a square of 3 cm per side, was printed, and an initial image density was determined. Further, after the fixed images having a printing ratio of 5% were printed continuously for 6000 sheets, a solid image (amount of toner adhesion: 0.7 mg/cm2), a square of 3 cm per side, was printed, and an image density after the durability printing was determined. Here, the image density was determined with X-rite Model 938 (commercially available from X-rite, aperture: 4 mm, light source C, angle of scope: 2). The results of the image densities evaluated in accordance with the following evaluation criteria are shown in Table 1.

[Evaluation Criteria]

    • custom character: The image density is 1.5 or more.
    • O: The image density is 1.2 or more and less than 1.5.
    • : The image density is 0.8 or more and less than 1.2.
    • X: The image density is less than 0.8.

Test Example 2

A toner was loaded to the same printer as in Test Example 1, and blank sheets (printing ratio: 0%) were printed under environmental conditions of a temperature of 35 C. and relative humidity of 80%. Thereafter, a toner on a photoconductor drum was transferred to a mending tape, and its hue was determined. The difference in hue with the blank sheet (E) was determined, and initial background fog was evaluated in accordance with the following evaluation criteria. Further, after fixed images having a printing ratio of 5% were continuously printed for 6000 sheets, blank sheets (printing ratio: 0%) were again printed under environmental conditions of a temperature of 35 C. and relative humidity of 80%, and the background fog after the durability printing was evaluated in the same manner as in the initial background fog. Here, the hue was determined according to L* a* b* with X-rite Model 938 (commercially available from X-rite, aperture: 4 mm, light source C, angle of scope: 2). The results are shown in Table 1.

[Evaluation Criteria]

    • custom character: The E is less than 1.0.
    • O: The E is 1.0 or more and less than 2.0.
    • : The E is 2.0 or more and less than 3.0.
    • X: The E is 3.0 or more.

Test Example 3

A toner was loaded to the same printer as in Test Example 1, and half-tone fixed images were printed. The evenness of the half tone was visually judged, thereby evaluating initial dot reproducibility in accordance with the following evaluation criteria. Further, after fixed images having a printing ratio of 5% were continuously printed for 6000 sheets, the half tone fixed images were again printed, and dot reproducibility was evaluated in the same manner as in initial dot reproducibility. The results are shown in Table 1.

[Evaluation Criteria]

    • custom character: The half tone is overall even and uniform.
    • O: The half tone is almost even without uniformity partially.
    • : The half tone is found to contain non-uniformity in certain portions, with granular feel.
    • X: The half tone has large non-uniformity and granular feel.
    • XX: The half tone has very large non-uniformity and granular feel.

TABLE 1 After 6000 Sheets of External Additive a Initial Durable Printing Negatively Average Positively Average External Back- Dot Back- Dot Chargeable Particle Chargeable Particle Additive Image ground Reproduci- Image ground Reproduci- Inorganic Oxide Size Inorganic Oxide Size b Density Fog bility Density Fog bility Ex. 1 R972/0.5 16 nm HVK2150/1.0 12 nm Ex. 2 RY-50/1.0 40 nm HVK2150/0.5 12 nm Ex. 3 HDK H30TM/1.0 8 nm HDK H13TA/0.5 20 nm Ex. 4 R972/1.0 16 nm HVK2150/0.5 12 nm RY-50/1.0 40 nm Ex. 5 R972/1.0 16 nm HVK2150/0.5 12 nm RY-50/0.5 Ex. 6 R972/1.0 16 nm HVK2150/0.5 12 nm RY-50/0.5 Ex. 7 JMT150IB/1.0 15 nm HVK2150/0.5 12 nm Comp. R972/1.0 16 nm X Ex. 1 HDK H30TM/0.5 8 nm Comp. HVK2150/1.0 12 nm X X Ex. 2 HDK H13TA/0.5 20 nm Comp. R972/0.5 16 nm HVK2150/0.6 X X X Ex. 3 Comp. R972/0.3 X X X XX Ex. 4 HVK2150/0.6 Note 1) The amount of the external additive is expressed by parts by weight. Note 2) The raw material mixture was melt-kneaded with a continuous twin open-roller type kneader only in Example 6. Note 3) R972: commercially available from Nippon Aerosil, DMDS-silica, 380 C/g, average particle size: 16 nm RY-50: commercially available from Nippon Aerosil, silicone oil-silica, 50 C/g, average particle size: 40 nm HDK H30TM: commercially available from Wacker Chemicals, HMDS-silica, 400 C/g, average particle size: 8 nm JMT150IB: commercially available from Tayca, isobutyl trimethoxysilane-titania, 30 C/g, average particle size: 15 nm HVK2150: commercially available from Wacker Chemicals, amino-modified silicone oil-silica, +150 C/g, average particle size: 12 nm HDK H13TA: commercially available from Wacker Chemicals, amino-modified silicone oil-silica, +110 C/g, average particle size: 20 nm

It can be seen from the above results that the toners of the Examples maintain image densities, have little background fog and excellent dot reproducibility even after durable printing, as compared to those of the toners of Comparative Examples.

The toner for electrostatic image development of the present invention can be suitably used, for instance, for the development of a latent image formed in electrophotography, electrostatic recording method, electrostatic printing method or the like.

The present invention being thus described, it will be obvious that the same may be varied in many ways. Such variations are not to be regarded as a departure from the spirit and scope of the invention, and all such modifications as would be obvious to one skilled in the art are intended to be included within the scope of the following claims.

Claims

1. A toner for electrostatic image development, obtainable by a process comprising the following steps:
(I) melt-kneading a raw material mixture in which no external additive has been added, said mixture comprising a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing the cooled mixture;
(II) mixing a pulverized product obtained in the step (I) with an external additive comprising a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment to form a mixture, and further pulverizing said mixture, and classifying the further pulverized product; and
(III) mixing the product obtained in step (II) with an inorganic oxide having an average particle size larger than the external additive of step (II).
(I) melt-kneading a raw material mixture in which no external additive has been added, said mixture comprising a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing the cooled mixture;
(II) mixing a pulverized product obtained in the step (I) with an external additive comprising a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment to form a mixture, and further pulverizing said mixture, and classifying the further pulverized product; and
(III) mixing the product obtained in step (II) with an inorganic oxide having an average particle size larger than the external additive of step (II).
2. The toner according to claim 1, wherein a triboelectric charge of the negatively chargeable inorganic oxide is from -10 to -500 C/g, and wherein a triboelectric charge of the positively chargeable inorganic oxide is from 10 to 500 C/g.
3. The toner according to claim 1, wherein at least one of the negatively chargeable inorganic oxide and the positively chargeable inorganic oxide is a hydrophobic silica.
4. The toner according to claim 1, wherein each of the negatively chargeable inorganic oxide and the positively chargeable inorganic oxide has an average particle size of from 6 to 20 nm.
5. The toner according to claim 1, wherein said inorganic oxide has an average particle size of from 25 to 100 nm.
6. The toner according to claim 1, wherein the melt-kneading of the raw material mixture in the step (I) is carried out with an open-roller type kneader.
7. The toner according to claim 1, wherein the toner has a volume-average particle size (D50) of from 3.5 to 9 m.
8. The toner according to claim 1, wherein the negatively chargeable inorganic oxide and the positively chargeable inorganic oxide are uniformly dispersed on and adhered to a surface of the toner.
9. The toner according to claim 1, wherein the positively chargeable inorganic oxide is a silica subjected to hydrophobic treatment with an amino-modified silicone oil, an aminosilane, or an epoxy-modified silicone oil.
10. The toner according to claim 1, which is a negatively chargeable toner, wherein the weight ratio of the negatively chargeable inorganic oxide to the positively chargeable inorganic oxide is from 90/10 to 50/50.
11. The toner according to claim 1, which is a positively chargeable toner, wherein the weight ratio of the negatively chargeable inorganic oxide to the positively chargeable inorganic oxide is from 20/80 to 60/40.
12. A process for preparing a toner for electrostatic image development, comprising the following steps:
(I) melt-kneading a raw material mixture in which no external additive has been added, said mixture comprising a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing the cooled mixture;
(II) mixing a pulverized product obtained in the step (I) with an external additive comprising a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment to form a mixture, and further pulverizing said mixture, and classifying the further pulverized product; and
(III) mixing the product obtained in step (II) with an inorganic oxide having an average particle size larger than the external additive of step (II).
(I) melt-kneading a raw material mixture in which no external additive has been added, said mixture comprising a resin binder, a releasing agent, and a colorant, cooling the melt-kneaded mixture, and pulverizing the cooled mixture;
(II) mixing a pulverized product obtained in the step (I) with an external additive comprising a negatively chargeable inorganic oxide subjected to hydrophobic treatment and a positively chargeable inorganic oxide subjected to hydrophobic treatment to form a mixture, and further pulverizing said mixture, and classifying the further pulverized product; and
(III) mixing the product obtained in step (II) with an inorganic oxide having an average particle size larger than the external additive of step (II).
13. The process according to claim 12, wherein the pulverizing step in the step (II) is carried out with a jet mill having an air pressure during pulverization of from 0.2 to 1MPa.
14. The process according to claim 12, wherein the melt-kneading of the raw material mixture in the step (I) is carried out with an open-roller type kneader.
15. The process according to claim 12, wherein a triboelectric charge of the negatively chargeable inorganic oxide is from -10 to -500 C/g, and wherein a triboelectric charge of the positively chargeable inorganic oxide is from 10 to 500 C/g.
16. The process according to claim 12, wherein at least one of the negatively chargeable inorganic oxide and the positively chargeable inorganic oxide is a hydrophobic silica.
17. The process according to claim 12, wherein each of the negatively chargeable inorganic oxide and the positively chargeable inorganic oxide has an average particle size of from 6 to 20 nm.
18. The process according to claim 12, wherein said inorganic oxide has an average particle size of from 25 to 100 nm.
19. The process according to claim 12, wherein the toner has a volume-average particle size (D50) of from 3.5 to 9 m.
20. The process according to claim 12, wherein the negatively chargeable inorganic oxide and the positively chargeable inorganic oxide are uniformly dispersed on and adhered to a surface of the toner.
21. The process according to claim 12, wherein the pulverized product obtained in the step (I) has an average particle size of from 0.03 to 4 mm.
22. The process according to claim 12, wherein the positively chargeable inorganic oxide is a silica subjected to hydrophobic treatment with an amino-modified silicone oil, an aminosilane, or an epoxy-modified silicone oil.
23. The process according to claim 12, which is a negatively chargeable toner, wherein the weight ratio of the negatively chargeable inorganic oxide to the positively chargeable inorganic oxide is from 90/10 to 50/50.
24. The process according to claim 12, which is a positively chargeable toner, wherein the weight ratio of the negatively chargeable inorganic oxide to the positively chargeable inorganic oxide is from 20/80 to 60/40.