TLR4 Inactivation in Myeloid Cells Accelerates Bone Healing of a Calvarial Defect Model in Mice.

Research paper by Dan D Wang, James R JR Gilbert, Gwen M GM Taylor, Chhinder P CP Sodhi, David J DJ Hackam, Joseph E JE Losee, Timothy R TR Billiar, Gregory M GM Cooper

Indexed on: 27 Jul '17Published on: 27 Jul '17Published in: Plastic and reconstructive surgery


Toll-like receptor 4 (TLR4) has been implicated in inflammation-induced bone destruction in various chronic bone diseases; however, its direct influence on bone healing is not well understood. The authors' previous study showed accelerated bone healing with higher osteoclastogenesis gene expression in toll-like receptor 4 knockout mice (TLR4). This study aimed to further elucidate the underlying cellular mechanisms during fracture healing by generating a myeloid cell-specific toll-like receptor 4 knockout model (Lyz-TLR4 mice).Calvarial defects, 1.8 mm in diameter, were created in wild-type, TLR4, and Lyz-TLR4 mice. Bone healing was investigated using micro-computed tomography and histologic, histomorphometric, and immunohistochemistry analyses. Primary bone marrow-derived cells were also isolated from wild-type, TLR4, and Lyz-TLR4 mice to measure their osteoclast differentiation and resorption properties.A similar faster bone healing response, with active intramembranous bone formation, intense osteopontin staining, and more osteoblast infiltration, was observed in TLR4 and Lyz-TLR4 mice. Tartrate-resistant acid phosphatase staining showed more osteoclast infiltration in Lyz-TLR4 mice than in wild-type mice at day 7. Primary bone marrow-derived cells isolated from TLR4 and Lyz-TLR4 mice presented enhanced osteoclastogenesis and resorption activity compared with those from wild-type mice. Comparable M0, M1, and M2 macrophage infiltration was found among all groups at days 1, 4, and 7.This study revealed that inactivation of toll-like receptor 4 in myeloid cells enhanced osteoclastogenesis and accelerated healing response during skull repair. Together with the role of toll-like receptor 4 in inflammation-mediated bone destruction, it suggests that toll-like receptor 4 might regulate inflammation-induced osteoclastogenesis under different clinical settings.