Thymic stromal lymphopoietin-induced interleukin-17A is involved in the development of IgE-mediated atopic dermatitis-like skin lesions in mice.

Research paper by Nobuaki N Mizutani, Chutha C Sae-Wong, Sureeporn S Kangsanant, Takeshi T Nabe, Shin S Yoshino

Indexed on: 28 Aug '15Published on: 28 Aug '15Published in: Immunology


Atopic dermatitis (AD) is a chronic inflammatory skin disease associated with elevated levels of allergen-specific IgE. Although thymic stromal lymphopoietin (TSLP) and interleukin-17A (IL-17A) have been considered as important factors in allergic diseases, their relationships in AD have not been fully defined. Here, we show the contribution of TSLP-induced IL-17A responses to IgE-mediated AD-like skin lesions. BALB/c mice passively sensitized by intraperitoneal injections of ovalbumin (OVA)-specific IgE monoclonal antibody (mAb) were challenged with OVA applied to the skin six times. Treatment with anti-TSLP mAb during the second to sixth challenges inhibited IgE-mediated AD-like skin lesions and IL-17A production in lymph nodes. Furthermore, the increased number of IL-17A-producing CD4(+) and γδ T cells in lymph nodes and neutrophilic inflammation in the skin were reduced by anti-TSLP mAb. These findings prompted us to examine the roles of IL-17A. Treatment with anti-IL-17A mAb suppressed the AD-like skin lesions and neutrophilic inflammation; anti-Gr-1 mAb also inhibited them. Furthermore, treatment with CXCR2 antagonist reduced the AD-like skin lesions and neutrophilic inflammation accompanied by the reduction of IL-17A production; the increased CXCR2 expression in the epidermal cells was suppressed by anti-TSLP mAb. Meanwhile, these treatments, except for anti-Gr-1 mAb, inhibited the increased mast cell accumulation in the skin. Collectively, the mechanism of IgE mediating IL-17A-producing CD4(+) and γδ T cells through TSLP by repeated antigen challenges is involved in AD-like skin lesions associated with skin inflammation, such as neutrophil and mast cell accumulation; TSLP may regulate CXCR2 signalling-induced IL-17A production.