Three phase model of the processive motor protein kinesin.

Research paper by Yunxin Y Zhang

Indexed on: 06 May '08Published on: 06 May '08Published in: Biophysical Chemistry


Kinesin is a stepping motor that successively produces forward and backward 8-nm steps along microtubules. Under physiological conditions, the steps powering kinesin's motility are biased in one direction and drive various biological motile processes. So far, the physical mechanism underlying the unidirectional bias of the kinesin is not fully understood. Recently, Martin Bier have provided a stepper model [Martin Bier, 2003, Processive motor protein as an overdamped Brownian stepper, Phys. Rev. Lett. 91, 148104], in which the stepping cycle of kinesin includes two distinguished phases: (i) a power stroke phase and (ii) a ratcheted diffusion phase which is characterized as a "random diffusional search". At saturating ATP level, this model can fit the experimental results accurately. In this paper, we'll provide a modified Brownian stepper model, in which the dependence of ATP concentration is considered. In our model, the stepping cycle of kinesin is distinguished into three phases: an ATP-binding phase, a power stroke phase and a ratcheted diffusion phase. This modified model can reconstruct most of the experimental results accurately.