Quantcast

Three-dimensional electrophysiological topography of the rat corticostriatal system.

Research paper by G G Glynn, S O SO Ahmad

Indexed on: 25 Oct '02Published on: 25 Oct '02Published in: Journal of Comparative Physiology A



Abstract

Projections from the cerebral cortex are the major afferents of the caudoputamen and probably determine the functions subserved by each region of the nucleus. The corticostriatal system has been mapped using cytological techniques which give little information on the physiological importance of projections from individual cortical areas. The objective of this study was to characterize the three-dimensional topography of the corticostriatal system in the rat and to determine the physiological significance of these projections using electrophysiological techniques. Eight functionally distinct areas of the cerebral cortex (prefrontal, primary motor, rostral and caudal primary somatosensory, hindlimb, auditory, occipital and primary visual) were stimulated while recording the multiple unit activity in seven dorsal and seven ventral areas of the caudoputamen. Each stimulation site produced a distinctive pattern of activation within the caudoputamen. There was also a large site-dependent variation in electrophysiological activation produced by each stimulation. The motor and somatosensory areas produced the most powerful overall activation. In addition, a number of trends were obvious. There was a rostrocaudal topographical relationship between the site of stimulation and the area of the caudoputamen activated. Furthermore, more caudally and medially placed stimulation sites produced greater dorsal activation of the caudoputamen relative to ventral.