Thioredoxin-interacting protein deficiency ameliorates kidney inflammation and fibrosis in mice with unilateral ureteral obstruction.

Research paper by Ming M Wu, Ruoyu R Li, Yanjuan Y Hou, Shan S Song, Weixia W Han, Nan N Chen, Yunxia Y Du, Yunzhuo Y Ren, Yonghong Y Shi

Indexed on: 10 Jun '18Published on: 10 Jun '18Published in: Laboratory Investigation


Thioredoxin-interacting protein (TXNIP) is associated with inflammation, tubulointerstitial fibrosis, and oxidative stress in diabetic kidney disease, yet the potential role of TXNIP in nondiabetic renal injury is not well known. This study aimed to investigate the effect of TXNIP on renal injury by creating a unilateral ureteral obstruction (UUO) model in TXNIP knockout (TKO) mice. We performed sham or UUO surgery in 8-week-old TXNIP KO male mice and age and sex-matched wild-type (WT) mice. Animals were killed at 3, 5, 7, or 14 days after surgery, and renal tissues were obtained for RNA, protein, and other analysis. Our results show that the expression of TXNIP was increased in a time-dependent manner in the ligated kidneys. TXNIP deletion reduced renal fibrosis, apoptosis, α-SMA, TGF-β1 and CTGF expression, and activation of Smad3, p38 MAPK, and ERK1/2 in UUO kidneys. We also found UUO-induced renal F4/80+ macrophage infiltration, MCP-1 expression and activation of NF-κB and NLRP3 inflammasome were attenuated in TKO mice. Furthermore, our study revealed that TXNIP deficiency inhibited the expression of 8-OHdG, heme oxygenase-1 (HO-1) and NADPH oxidase 4 (Nox4) in UUO kidney. In summary, our study suggests that TXNIP plays a key role in the renal inflammation and fibrosis induced by UUO. Inhibition of TXNIP may be a strategy to slow the progression of chronic kidney diseases.