Quantcast

Thermal stability of hydrophobic helical oligomers: a lattice simulation study in explicit water.

Research paper by Santiago S Romero-Vargas Castrillón, Silvina S Matysiak, Frank H FH Stillinger, Peter J PJ Rossky, Pablo G PG Debenedetti

Indexed on: 11 Aug '12Published on: 11 Aug '12Published in: Journal of Physical Chemistry B



Abstract

We investigate the thermal stability of helical hydrophobic oligomers using a three-dimensional, water-explicit lattice model and the Wang-Landau Monte Carlo method. The degree of oligomer helicity is controlled by the parameter ε(mm) < 0, which mimics monomer-monomer hydrogen bond interactions leading to the formation of helical turns in atomistic proteins. We vary |ε(mm)| between 0 and 4.5 kcal/mol and therefore investigate systems ranging from flexible homopolymers (i.e., those with no secondary structure) to helical oligomers that are stable over a broad range of temperatures. We find that systems with |ε(mm)| ≤ 2.0 kcal/mol exhibit a broad thermal unfolding transition at high temperature, leading to an ensemble of random coils. In contrast, the structure of conformations involved in a second, low-temperature, transition is strongly dependent on |ε(mm)|. Weakly helical oligomers are observed when |ε(mm)| ≤ 1.0 kcal/mol and exhibit a low-temperature, cold-unfolding-like transition to an ensemble of strongly water-penetrated globular conformations. For higher |ε(mm)| (1.7 kcal/mol ≤ |ε(mm)| ≤ 2.0 kcal/mol), cold unfolding is suppressed, and the low-temperature conformational transition becomes a "crystallization", in which a "molten" helix is transformed into a defect-free helix. The molten helix preserves ≥50% of the helical contacts observed in the "crystal" at a lower temperature. When |ε(mm)| = 4.5 kcal/mol, we find that conformational transitions are largely suppressed within the range of temperatures investigated.