Thermal entanglement and teleportation in a two-qubit Heisenberg chain with Dzyaloshinski-Moriya anisotropic antisymmetric interaction

Research paper by Guo-Feng Zhang

Indexed on: 02 Mar '07Published on: 02 Mar '07Published in: Quantum Physics


Thermal entanglement of a two-qubit Heisenberg chain in presence of the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction and entanglement teleportation when using two independent Heisenberg chains as quantum channel are investigated. It is found that the DM interaction can excite the entanglement and teleportation fidelity. The output entanglement increases linearly with increasing value of input one, its dependences on the temperature, DM interaction and spin coupling constant are given in detail. Entanglement teleportation will be better realized via antiferromagnetic spin chain when the DM interaction is turned off and the temperature is low. However, the introduction of DM interaction can cause the ferromagnetic spin chain to be a better quantum channel for teleportation. A minimal entanglement of the thermal state in the model is needed to realize the entanglement teleportation regardless of antiferromagnetic or ferromagnetic spin chains.