The vascular morphology and in vivo muscle temperatures of thresher sharks (Alopiidae).

Research paper by James C JC Patterson, Chugey A CA Sepulveda, Diego D Bernal

Indexed on: 21 Jun '11Published on: 21 Jun '11Published in: Journal of Morphology


The thresher sharks comprise a single family (Alopiidae) of pelagic sharks most easily recognized by the elongate dorsal lobe of their caudal fin. Despite morphological similarities among the alopiids, the common thresher (Alopias vulpinus) is unique in that its red, aerobic myotomal muscle (RM) is medially positioned (i.e., closer to the vertebrae), its systemic blood is supplied through a lateral circulation which give rise to counter-current heat exchanging retia, and it is capable of regional RM endothermy. Despite this information, it remains unknown if the other two alopiid species (bigeye thresher, Alopias superciliosus and pelagic thresher, Alopias pelagicus) also possess some or all of the characteristics related to regional RM endothermy. Thus, this study aimed to 1) document the presence of vascular specializations necessary for heat retention and RM endothermy and 2) measure the in vivo muscle temperatures of all three alopiid species. Laboratory dissections of the thresher species showed that only A. vulpinus possesses the lateral branching of the dorsal aorta giving rise to a lateral subcutaneous circulation and retial system, and that RM temperatures are elevated relative to ambient temperature. By contrast, both A. pelagicus and A. superciliosus have a similar systemic blood circulation pathway, in which the dorsal aorta and postcardinal vein form the basis for the central circulation and in vivo RM temperature measurements closely matched those of the ambient temperature at which the sharks were captured. Collectively, the vascular anatomy and in vivo temperature data suggest that only one species of thresher shark (A. vulpinus) possesses the requisite vascular specializations (i.e., lateral subcutaneous vessels and retia mirabilia) that facilitate RM endothermy.