Quantcast

The unity between quantum field computation, real computation, and quantum computation

Research paper by A. C. Manoharan

Indexed on: 03 Sep '01Published on: 03 Sep '01Published in: Quantum Physics



Abstract

It is indicated that principal models of computation are indeed significantly related. The quantum field computation model contains the quantum computation model of Feynman. (The term "quantum field computer" was used by Freedman.) Quantum field computation (as enhanced by Wightman's model of quantum field theory) involves computation over the continuum which is remarkably related to the real computation model of Smale. The latter model was established as a generalization of Turing computation. All this is not surprising since it is well known that the physics of quantum field theory (which includes Einstein's special relativity) contains quantum mechanics which in turn contains classical mechanics. The unity of these computing models, which seem to have grown largely independently, could shed new light into questions of computational complexity, into the central P (Polynomial time) versus NP (Non-deterministic Polynomial time) problem of computer science, and also into the description of Nature by fundamental physics theories.