The monoid of monotone injective partial selfmaps of the poset $(\mathbb{N}^{3},\leqslant)$ with cofinite domains and images

Research paper by Oleg Gutik, Olha Krokhmalna

Indexed on: 09 Jun '20Published on: 08 Jun '20Published in: arXiv - Mathematics - Group Theory


Let $n$ be a positive integer $\geqslant 2$ and $\mathbb{N}^n_{\leqslant}$ is the $n$-th power of positive integers with the product order of the usual order on $\mathbb{N}$. In the paper we study the semigroup of injective partial monotone selfmaps of $\mathbb{N}^n_{\leqslant}$ with cofinite domains and images. We show that the group of units $H(\mathbb{I})$ of the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^n_{\leqslant})$ is isomorphic to the group $\mathscr{S}_n$ of permutations of an $n$-element set, and describe the subsemigroup of idempotents of $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^n_{\leqslant})$. Also in the case $n=3$ we describe the property of elements of the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^3_{\leqslant})$ as partial bijections of the poset $\mathbb{N}^3_{\leqslant}$ and Green's relations on the semigroup $\mathscr{P\!O}\!_{\infty}(\mathbb{N}^3_{\leqslant})$.