Quantcast

The Influence of artificial plasma irregularities on the propagation of VLF waves in the Earth’s magnetosphere

Research paper by D. L. Pasmanik, A. G. Demekhov

Indexed on: 04 Feb '14Published on: 04 Feb '14Published in: Cosmic Research



Abstract

In the framework of the approximation of geometric optics, the peculiarities of VLF-wave propagation in the Earth’s ionosphere and magnetosphere during the creation of large-scale artificial plasma irregularities by heating facilities such as HAARP and “Sura” in the ionosphere are studied. For calculation of ray trajectories, the profile of the concentration and ion composition of plasma is taken by calculating the SAMI2 ionospheric model, which was modified to take the influence on the ionosphere of the HF emissions of heating facilities into account. As a result of the influence of the heating facilities on the ionosphere, a region could occur with an increased plasma concentration that is stretched out along the geomagnetic field (up to heights on the order of the Earth’s radius) with small dimensions across the field (∼1°). The ray trajectories of waves that propagate from heights of about 100 km from different initial points in the region where such a disturbance has been created with different initial inclination angles of the wave normal are studied in this paper. Both lightning discharges and modulated HF heating of the ionosphere could be the sources of such waves. It is shown on the basis of the performed analysis that the presence of such disturbances in density can lead to a substantial changes in wave-propagation trajectories, in particular, to efficient channeling of VLF waves in the disturbance region and an increase in the interval of the initial propagation angles of waves, which can reach the ionosphere in the opposite hemisphere.