The hydration shell of myoglobin

Research paper by F. Parak, H. Hartmann, M. Schmidt, G. Corongiu, E. Clementi

Indexed on: 01 Nov '92Published on: 01 Nov '92Published in: European Biophysics Journal


The space in the unit cell of a metmyoglobin crystal not occupied by myoglobin atoms was filled with water using Monte Carlo calculations. Independent calculations with different amounts of water have been performed. Structure factors were calculated using the water coordinates thus obtained and the known coordinates of the myoglobin atoms. A comparison with experimental structure factors showed that both the low and the high resolution regime could be well reproduced with 814 Monte Carlo water molecules per unit cell with a B-value of 50 Å2. The Monte Carlo water molecules yield a smaller standard R-value (0.166) than using a homogeneous electron density for the simulation of the crystal water (R = 0.212). A reciprocal space refinement of the water and the protein coordinates has been performed. Monte Carlo calculations can be used to obtain information for crystallographically invisible parts of the unit cell and yield better coordinates for the visible part in the refinement.