Quantcast

The heat of dissolution of uranyl nitrate in aqueous nitrate solutions

Research paper by O. Ya. Samoilov, V. I. Yashkichev

Indexed on: 01 Mar '62Published on: 01 Mar '62Published in: Journal of Structural Chemistry



Abstract

A model has been suggested to explain the observed relationship between the measured heats of dissolution of uranyl nitrate in aqueous nitrate solutions and the concentration of the salting-out agent. The model describes the change in the structure of water in the solution with change in its concentration. On the one hand, a destruction of the water structure by ions occurs, which is weakened with increase in the distance from the ion, and leads to such irregularity in the distribution of water molecules in the solution that the mean number of molecules of water in unit volume is increased with increase in the distance from the ions. In experiments on the heat of dissolution this increase leads to increased hydration of the uranyl cation and reduction in the endothermicity of the dissolution with increase in the concentration of the solution. On the other hand, an interaction occurs between the ions of the salting-out agent and the water molecules in the solution, leading to the opposite result: There is an increase in the mean number of water molecules of the solution in unit volume in the direction of these ions. In experiments on the heat of dissolution this is revealed in the dehydration of the uranyl cation, and correspondingly in an increase in the endothermicity of the dissolution with increase in the concentration of the solution. The proposed model is in harmony with data on vapor pressure above the solutions (the relationship between the activity coefficient of the water and the concentration of the solution).