The function of the clock-associated transcriptional regulator CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) in Arabidopsis thaliana.

Research paper by Masakazu M Kawamura, Shogo S Ito, Norihito N Nakamichi, Takafumi T Yamashino, Takeshi T Mizuno

Indexed on: 08 May '08Published on: 08 May '08Published in: Bioscience, biotechnology, and biochemistry


In the model higher plant Arabidopsis thaliana, the CCA1 (CIRCADIAN CLOCK-ASSOCIATED 1) gene plays important circadian clock-associated roles. The CCA1 protein is a member of a small subfamily of single MYB-related transcription factors. This family consists of several homologous CCA1-like transcription factors, including the closest homolog LHY (LATE ELONGATED HYPOCOTYL). To gain insight into the molecular function of CCA1 and its homologs, here we took a unique genetic approach that was recently developed for Arabidopsis thaliana. Through this strategy, referred to as CRES-T (Chimeric REpressor Silencing Technology), a transgenic plant was constructed to produce a dominant negative transcriptional repressor (designated CCA1-SRDX). By employing the resulting transgenic lines, together with previously established cca1 lhy double mutant and CCA1-ox (over-expressing) plants, their circadian clock-associated phenotypes were examined and compared with each other. The observed clock-associated phenotypes of the CCA1-SRDX plants were very similar to those of CCA1-ox, but not to those of cca1 lhy, suggesting that CCA1 acts predominantly as a transcriptional repressor in nature. However, the developmental morphology (or architecture) of adult CCA1-SRDX plants were quite different from that of CCA1-ox, suggesting that CCA1 might also be implicated, directly or indirectly, in an as yet unknown circadian-associated output pathway at a late developmental stage.