Quantcast

The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells.

Research paper by Axel A Schubert, Katherina K Zakikhany, Giampiero G Pietrocola, Andreas A Meinke, Pietro P Speziale, Bernhard J BJ Eikmanns, Dieter J DJ Reinscheid

Indexed on: 27 Oct '04Published on: 27 Oct '04Published in: Infection and immunity



Abstract

Streptococcus agalactiae is a major cause of bacterial pneumonia, sepsis, and meningitis in human neonates. During the course of infection, S. agalactiae adheres to a variety of epithelial cells but the underlying mechanisms are only poorly understood. The present report demonstrates the importance of the fibrinogen receptor FbsA for the streptococcal adherence and invasion of epithelial cells. Deletion of the fbsA gene in various S. agalactiae strains substantially reduced their binding of soluble fibrinogen and their adherence to and invasion of epithelial cells, indicating a role of FbsA in these different processes. The adherence and invasiveness of an fbsA deletion mutant were partially restored by reintroducing the fbsA gene on an expression vector. Heterologous expression of fbsA in Lactococcus lactis enabled this bacterium to adhere to but not to invade epithelial cells, suggesting that FbsA is a streptococcal adhesin. Flow cytometry experiments revealed a dose-dependent binding of FbsA to the surface of epithelial cells. Furthermore, tissue culture experiments exhibited an intimate contact of FbsA-coated latex beads with the surfaces of human epithelial cells. Finally, host cell adherence and invasion were significantly blocked in competition experiments with either purified FbsA protein or a monoclonal antibody directed against the fibrinogen-binding epitope of FbsA. Taken together, our studies demonstrate that FbsA promotes the adherence of S. agalactiae to epithelial cells but that FbsA does not mediate the bacterial invasion into host cells. Our results also indicate that fibrinogen-binding epitopes within FbsA are involved in the adherence of S. agalactiae to epithelial cells.