The effect of physiological noise in phase functional magnetic resonance imaging: from blood oxygen level-dependent effects to direct detection of neuronal currents.

Research paper by Gisela E GE Hagberg, Marta M Bianciardi, Valentina V Brainovich, Antonino Mario AM Cassarà, Bruno B Maraviglia

Indexed on: 16 May '08Published on: 16 May '08Published in: Magnetic Resonance Imaging


Recently, the possibility to use both magnitude and phase image sets for the statistical evaluation of fMRI has been proposed, with the prospective of increasing both statistical power and the spatial specificity. In the present work, several issues that affect the spatial and temporal stability in fMRI phase time series in the presence of physiologic noise processes are reviewed, discussed and illustrated by experiments performed at 3 T. The observed phase value is a fingerprint of the underlying voxel averaged magnetic field variations. Those related to physiological processes can be considered static or dynamic in relation to the temporal scale of a 2D acquisition and will play out on different spatial scales as well: globally across the entire images slice, and locally depending on the constituents and their relative fractions inside the MRI voxel. The 'static' respiration-induced effects lead to magneto-mechanic scan-to-scan variations in the global magnetic field but may also contribute to local BOLD fluctuations due to respiration-related variations in arterial carbon dioxide. Likewise, the 'dynamic' cardiac-related effects will lead to global susceptibility effects caused by pulsatile motion of the brain as well as local blood pressure-related changes in BOLD and changes in blood flow velocity. Finally, subject motion may lead to variations in both local and global tissue susceptibility that will be especially pronounced close to air cavities. Since dissimilar manifestations of physiological processes can be expected in phase and in magnitude images, a direct relationship between phase and magnitude scan-to-scan fluctuations cannot be assumed a priori. Therefore three different models were defined for the phase stability, each dependent on the relation between phase and magnitude variations and the best will depend on the underlying noise processes. By experiments on healthy volunteers at rest, we showed that phase stability depends on the type of post-processing and can be improved by reducing the low-frequency respiration-induced mechano-magnetic effects. Although the manifestations of physiological noise were in general more pronounced in phase than in magnitude images, due to phase wraps and global Bo effects, we suggest that a phase stability similar to that found in magnitude could theoretically be achieved by adequate correction methods. Moreover, as suggested by our experimental data regarding BOLD-related phase effects, phase stability could even supersede magnitude stability in voxels covering dense microvascular networks with BOLD-related fluctuations as the dominant noise contributor. In the interest of the quality of both BOLD-based and nc-MRI methods, future studies are required to find alternative methods that can improve phase stability, designed to match the temporal and spatial scale of the underlying neuronal activity.