Quantcast

The effect of deposition Se on the mRNA expression levels of GPxs in goats from a Se-enriched county of China.

Research paper by Lei L Zhang, Zhan-Qin ZQ Zhou, Guang G Li, Ming-Zhe MZ Fu

Indexed on: 28 Sep '13Published on: 28 Sep '13Published in: Biological Trace Element Research



Abstract

Previous studies revealed that Se was an important regulatory factor for glutathione peroxidase (GPx) genes. However, the relationship between Se concentrations and mRNA expression levels of GPxs were unclear in goats, especially the goats living in natural Se-enriched area. Thus, the aim of this study was to determine the Se concentrations and the mRNA expression levels of GPx-1, GPx-2, GPx-3, and GPx-4 in goats from Ziyang County (ZY-H and ZY-L goats) and Baoji City (BJ-P goats), which were Se-rich region and Se-poor region in China, respectively. Atomic fluorescence spectrometry was used as an essential method to determine the Se concentrations in heart, liver, spleen, lung, kidney, longissimus, biceps femoris, and serum, and the gene expressions were quantified in mRNA samples extracted from the above tissues by real-time quantitative reverse transcription-polymerase chain reaction. We found that the Se concentrations in ZY-H and ZY-L goats were higher than that in BJ-P goats significantly (P < 0.05), and the pertinence relations of Se levels between serum and heart, liver, spleen, and kidney were significant (P < 0.05). The mRNA levels of GPx-1 in ZY-H and ZY-L goats were higher than that in BJ-P goats very significantly (P < 0.01) except for longissimus (P < 0.05). Our results indicated a significant trend for GPx-2 in the direction of increasing mRNA levels with increasing Se concentrations in goats but had no statistical significance (P > 0.05) in our experimental conditions. As to GPx-3, its mRNA expression in spleen, lung, and kidney (P < 0.05) were upregulated and were consensual to high Se contents in ZY-H goats, but no significant effects were observed in heart, liver, longissimus, and biceps femoris among our three groups (P > 0.05). The mRNA levels of GPx-4 in heart, liver, lung, and kidney of ZY-H and ZY-L goats were higher than that of BJ-P goats (P < 0.05), and the difference was very significant in lung especially (P < 0.01), but no change in spleen, longissimus, and biceps femoris (P > 0.05). In summary, these data suggested that the goats living in Ziyang County were rich in Se, and the deposition Se played important roles in the mRNA expression of GPx-1, GPx-3, and GPx-4 in certain tissues of goats differentially.