The downregulation of SnoN expression in human renal proximal tubule epithelial cells under high-glucose conditions is mediated by an increase in Smurf2 expression through TGF-β1 signaling.

Research paper by Xiuji X Li, Zongli Z Diao, Jiaxiang J Ding, Ruixia R Liu, Liyan L Wang, Wen W Huang, Wenhu W Liu

Indexed on: 09 Jan '16Published on: 09 Jan '16Published in: International journal of molecular medicine


Transforming growth factor (TGF)-β1 is a profibrotic cytokine that plays a critical role in the progression of diabetic nephropathy (DN). Previous studies have demonstrated that the Smad transcriptional co-repressor, Ski-related novel protein N (SnoN), an antagonizer of TGF-β1/Smad signaling, is downregulated in the kidneys of diabetic rats; however, the underlying molecular mechanisms remain elusive. In the present study, we demonstrated that the upregulation of Smad ubiquitination regulatory factor-2 (Smurf2), through TGF-β1/Smad signaling, contributes to the downregulation of SnoN under high-glucose conditions in primary human renal proximal tubule epithelial cells (hRPTECs). The hRPTECs were cultured in high-glucose (30 mmol/l D-glucose) medium in the presence or absence of either the proteasome inhibitor, MG132, or the TGF-β type I receptor kinase inhibitor, SB-431542. Small interfering RNA (siRNA) was used to silence Smurf2. The expression levels of SnoN, Smurf2, Smad2 and phosphorylated (p-)Smad2 were measured by western blot analysis and RT-qPCR. The protein levels of SnoN were markedly downregulated, while its mRNA levels were increased in the hRPTECs cultured under high-glucose conditions. The protein and mRNA levels of Smurf2 were significantly increased under high-glucose conditions. The knockdown of Smurf2 increased SnoN expression in the hRPTECs cultured in high-glucose medium. Moreover, MG132 partially inhibited SnoN degradation in the hRPTECs under high-glucose conditions and SB-431542 decreased the phosphorylation of Smad2 and the expression of Smurf2 induced under high-glucose conditions. Taken together, the findings of this study demonstrate that the downregulation of SnoN expression in hRPTECs under high-glucose conditions is mediated by the increased expression of Smurf2 through the TGF-β1/Smad signaling pathway.