Quantcast

The distribution of human surfactant proteins within the oral cavity and their role during infectious diseases of the gingiva.

Research paper by Martin M Schicht, Christina C Stengl, Sadettin S Sel, Friedhelm F Heinemann, Werner W Götz, Anselm A Petschelt, Matthias M Pelka, Michael M Scholz, Felix F Rausch, Friedrich F Paulsen, Lars L Bräuer

Indexed on: 16 Jul '14Published on: 16 Jul '14Published in: Annals of Anatomy



Abstract

The oral cavity with the teeth and the surrounding gingival epithelium, the periodontium, the salivary glands and other structures are open to the oral environment and thus exposed to multiple microbiological and pathogenic influences. To prevent permanent inflammatory processes such as gingivitis or periodontitis an efficient defense system is essential to ensure healthy and physiological function of the oral cavity and other interacting organic systems. Surfactant proteins (SPs), originally found in pulmonary tissue are important factors of the immune system and beyond this, support the stability and rheology of gas or fluid interfaces. This study aimed to analyze the distribution of surfactant proteins by means of Western blot and immunohistochemistry in salivary glands as well as in healthy and pathological saliva. The different expression patterns of SP-A, -B, -C and -D in healthy and pathological (periodontitis) saliva were determined using ELISA quantification. One further objective of the study was the first detection of two recent discovered proteins belonging to the surfactant protein family within human salivary glands and saliva. The results of the study reveal differences in protein expression of SP-A, -B, -C and -D within healthy and pathologic saliva. The concentration of the surfactant proteins SP-A, SP-C and SP-D is increased in saliva of people suffering from periodontal diseases, whereas by contrast, SP-B shows an opposite expression pattern. Furthermore, the results evidence the presence of SP-G and SP-H within saliva and salivary glands for the first time.