Textural and microstructural transformation of Cu damascene interconnects after annealing

Research paper by Jae-Young Cho, Hyo-Jong Lee, Hyoungbae Kim, Jerzy A. Szpunar

Indexed on: 01 May '05Published on: 01 May '05Published in: Journal of Electronic Materials


Influence of annealing on the textural and microstructural transformation of Cu interconnects having various line widths is investigated. Two types of annealing steps have been considered here: room temperature over 6 months and 200°C for 10 min. The texture was determined by x-ray diffraction (XRD) of various cross-sectional profiles after electropolishing, and the surface, microstructure, and grain boundary character distribution (GBCD) of Cu interconnects were characterized using electron backscattered diffraction (EBSD) techniques. In order to analyze a relationship between the stress distribution and textural evolution in the samples, microstresses were calculated with decreasing line widths at 200°C using finite element modeling (FEM). In this investigation, it was found that the inhomogeneity of stress distribution in Cu interconnects is an important factor, which is necessary for understanding textural transformation after annealing. A new interpretation of textural evolution in damascene interconnects lines after annealing is suggested, based on the state of stress and the growth mechanisms of Cu electrodeposits.