Tensor networks for Lattice Gauge Theories and Atomic Quantum Simulation

E. Rico, T. Pichler, M. Dalmonte, P. Zoller, S. Montangero

Published:

We show that gauge invariant quantum link models, Abelian and non-Abelian,
can be exactly described in terms of tensor networks states. Quantum link
models represent an ideal bridge between high-energy to cold atom physics, as
they can be used in cold-atoms in optical lattices to study lattice gauge
theories. In this framework, we characterize the phase diagram of a (1+1)-d
quantum link version of the Schwinger model in an external classical background
electric field: the quantum phase transition from a charge and parity ordered
phase with non-zero electric flux to a disordered one with a net zero electric
flux configuration is described by the Ising universality class.