Quantcast

Temporally dependent accelerated failure time model for capturing the impact of events that alter survival in disease mapping.

Research paper by Rachel R Carroll, Andrew B AB Lawson, Shanshan S Zhao

Indexed on: 26 Jun '18Published on: 26 Jun '18Published in: Biostatistics (Oxford, England)



Abstract

The introduction of spatial and temporal frailty parameters in survival models furnishes a way to represent unmeasured confounding in the outcome of interest. Using a Bayesian accelerated failure time model, we are able to flexibly explore a wide range of spatial and temporal options for structuring frailties as well as examine the benefits of using these different structures in certain settings. A setting of particular interest for this work involved using temporal frailties to capture the impact of events of interest on breast cancer survival. Our results suggest that it is important to include these temporal frailties when there is a true temporal structure to the outcome and including them when a true temporal structure is absent does not sacrifice model fit. Additionally, the frailties are able to correctly recover the truth imposed on simulated data without affecting the fixed effect estimates. In the case study involving Louisiana breast cancer-specific mortality, the temporal frailty played an important role in representing the unmeasured confounding related to improvements in knowledge, education, and disease screenings as well as the impacts of Hurricane Katrina and the passing of the Affordable Care Act. In conclusion, the incorporation of temporal, in addition to spatial, frailties in survival analysis can lead to better fitting models and improved inference by representing both spatially and temporally varying unmeasured risk factors and confounding that could impact survival. Specifically, we successfully estimated changes in survival around the time of events of interest.