Temporal and spatial changes of suspended sediment concentration and resuspension in the Yangtze River estuary

Research paper by Chen Shenliang, Zhang Guoan, Yang Shilun

Indexed on: 01 Oct '03Published on: 01 Oct '03Published in: Journal of Geographical Sciences


A detailed analysis of suspended sediment concentration (SSC) variations over a year period is presented using the data from 8 stations in the Yangtze River estuary and its adjacent waters, together with a discussion of the hydrodynamic regimes of the estuary. Spatially, the SSC from Xuliujing downwards to Hangzhou Bay increases almost constantly, and the suspended sediment in the inner estuary shows higher concentration in summer than in winter, while in the outer estuary it shows higher concentration in winter than in summer, and the magnitude is greater in the outer estuary than in the inner estuary, greater in the Hangzhou Bay than in the Yangtze River estuary. The sediments discharged by the Yangtze River into the sea are resuspended by marine dynamics included tidal currents and wind waves. Temporally, the SSC shows a pronounced neap-spring tidal cycle and seasonal variations. Furthermore, through the analysis of dynamic mechanism, it is concluded that wave and tidal current are two predominant factors of sediment resuspension and control the distribution and changes of SSC, in which tidal currents control neap-spring tidal cycles, and wind waves control seasonal variations. The ratio between river discharge and marine dynamics controls spatial distribution of SSC.