Template-assisted lateral growth of amyloid-β42 fibrils studied by differential labeling with gold nanoparticles.

Research paper by Muriel M Arimon, Fausto F Sanz, Ernest E Giralt, Natàlia N Carulla

Indexed on: 02 Dec '11Published on: 02 Dec '11Published in: Bioconjugate Chemistry


Amyloid-β protein (Aβ) aggregation into amyloid fibrils is central to the origin and development of Alzheimer's disease (AD), yet this highly complex process is poorly understood at the molecular level. Extensive studies have shown that Aβ fibril growth occurs through fibril elongation, whereby soluble molecules add to the fibril ends. Nevertheless, fibril morphology strongly depends on aggregation conditions. For example, at high ionic strength, Aβ fibrils laterally associate into bundles. To further study the mechanisms leading to fibril growth, we developed a single-fibril growth assay based on differential labeling of two Aβ42 variants with gold nanoparticles. We used this assay to study Aβ42 fibril growth under different conditions and observed that bundle formation is preceded by lateral interaction of soluble Aβ42 molecules with pre-existing fibrils. Based on this data, we propose template-assisted lateral fibril growth as an additional mechanism to elongation for Aβ42 fibril growth.