Targeting GPCR-mediated p70S6K activity may improve head and neck cancer response to cetuximab.

Research paper by Neil E NE Bhola, Sufi M SM Thomas, Maria M Freilino, Sonali S Joyce, Anirban A Sahu, Jessica J Maxwell, Athanassios A Argiris, Raja R Seethala, Jennifer R JR Grandis

Indexed on: 10 Jun '11Published on: 10 Jun '11Published in: Clinical cancer research : an official journal of the American Association for Cancer Research


Epidermal growth factor receptor (EGFR) overexpression is correlated with decreased survival in head and neck cancer (HNC) where the addition of EGFR inhibition to standard chemoradiation approaches has improved treatment responses. However, the basis for the limited efficacy of EGFR inhibitors in HNC is incompletely understood. G-protein-coupled receptors (GPCR) have been shown to be overexpressed in HNC where GPCR activation induces HNC growth via both EGFR-dependent and -independent pathways. We hypothesized that targeting GPCR-induced EGFR-independent signaling would improve the efficacy of EGFR inhibition.Using a high-throughput phosphoproteome array, we identified proteins that were phosphorylated in HNC cells where EGFR expression was downmodulated by RNA interference (RNAi) in the presence or absence of a GPCR ligand. We confirmed the findings from the array by Western blotting followed by in vitro and in vivo phenotypic assays.p70S6K phosphorylation was elevated approximately sixfold in EGFR siRNA-transfected cells treated with a GPCR ligand. In addition to RNAi-mediated EGFR downmodulation, GPCR-mediated phosphorylation of p70S6K was modestly increased by EGFR inhibitor cetuximab approved by the Food and Drug Administration. Biopsies from cetuximab-treated patients also displayed increased phospho-p70S6K staining compared with pretreatment biopsies. HNC cells were growth inhibited by both genetic and pharmacologic p70S6K targeting strategies. Furthermore, p70S6K targeting in combination with cetuximab resulted in enhanced antitumor effects in both in vitro and in vivo HNC models.These results indicate that increased phosphorylation of p70S6K in cetuximab-treated patients may be due to increased GPCR signaling. Therefore, the addition of p70S6K targeting strategies may improve treatment responses to EGFR inhibition.