Targeted defect analysis in VCSEL oxide windows using 3D slice and view

Research paper by X Sun, W D A Rickard, C N Ironside, I Kostakis, M Missous, D Powell, A Anjomshoaa W Meredith

Indexed on: 15 May '21Published on: 11 May '21Published in: Semiconductor science and technology


We report on high resolution analysis of vertical cavity surface emitting lasers (VCSELs) to detect and assess defects in sub-surface layers. We employ a focussed ion beam scanning electron microscope (FIB-SEM) to sputter and image successive cross sections (slice and view technique) in order to produce a 3D reconstruction of the oxide aperture region. High resolution images and measurements of the multilayers and oxide apertures of VCSEL devices were obtained. The process took ∼2.5 h and produced over 270 slice SEM images for a device volume of approximately 13.2 × 16.0 × 13.8 μ m 3 , with a voxel size of 50 nm. On-wafer, single mode VCSEL devices with high and low output powers were analysed to compare their oxide apertures and distributed Bragg reflector (DBR) layer structures. It was found that the low output power VCSEL had DBR layer defects and a 41.8% reduction of effective oxide aperture area, explaining the lower power obtained. The results provide eviden...