Quantcast

Tailoring the interplay between electromagnetic fields and nanomaterials toward applications in life sciences: a review.

Research paper by Pablo P Del Pino

Indexed on: 11 Jul '14Published on: 11 Jul '14Published in: Journal of biomedical optics



Abstract

Continuous advances in the field of bionanotechnology, particularly in the areas of synthesis and functionalization of colloidal inorganic nanoparticles with novel physicochemical properties, allow the development of innovative and/or enhanced approaches for medical solutions. Many of the present and future applications of bionanotechnology rely on the ability of nanoparticles to efficiently interact with electromagnetic (EM) fields and subsequently to produce a response via scattering or absorption of the interacting field. The cross-sections of nanoparticles are typically orders of magnitude larger than organic molecules, which provide the means for manipulating EM fields and, thereby, enable applications in therapy (e.g., photothermal therapy, hyperthermia, drug release, etc.), sensing (e.g., surface plasmon resonance, surface-enhanced Raman, energy transfer, etc.), and imaging (e.g., magnetic resonance, optoacoustic, photothermal, etc.). Herein, an overview of the most relevant parameters and promising applications of EM-active nanoparticles for applications in life science are discussed with a view toward tailoring the interaction of nanoparticles with EM fields.