Quantcast

Szlenk indices of convex hulls ☆

Research paper by G. Lancien, A. Procházka, M. Raja

Indexed on: 18 Oct '16Published on: 17 Oct '16Published in: Journal of Functional Analysis



Abstract

We study the general measures of non-compactness defined on subsets of a dual Banach space, their associated derivations and their ω-iterates. We introduce the notions of convexifiable and sublinear measure of non-compactness and investigate the properties of its associated fragment and slice derivations. We apply our results to the Kuratowski measure of non-compactness and to the study of the Szlenk index of a Banach space. As a consequence, we obtain that the Szlenk index and the convex Szlenk index of a separable Banach space are always equal. We also give, for any countable ordinal α  , a characterization of the Banach spaces with Szlenk index bounded by ωα+1ωα+1 in terms of the existence of an equivalent renorming. This extends a result by Knaust, Odell and Schlumprecht on Banach spaces with Szlenk index equal to ω.