Quantcast

Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors.

Research paper by Yan-Ting YT Wang, Ya-Juan YJ Qin, Na N Yang, Ya-Liang YL Zhang, Chang-Hong CH Liu, Hai-Liang HL Zhu

Indexed on: 13 Jun '15Published on: 13 Jun '15Published in: European Journal of Medicinal Chemistry



Abstract

A series of 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives were designed, synthesized and evaluated as potential tubulin polymerization inhibitors and for the cytotoxicity against anthropic cancer cell lines. Among the novel compounds, compound 11f was demonstrated the most potent tubulin polymerization inhibitory activity (IC50 = 1.5 μM) and antiproliferative activity against A549, HepG2 and MCF-7 (GI50 = 2.4, 3.8 and 5.1 μM, respectively), which was compared with the positive control colchicine and CA-4. We also evaluated that compound 11f could effectively induce apoptosis of A549 associated with G2/M phase cell cycle arrest. Docking simulation and 3D-QSAR model in these studies provided more information that could be applied to design new molecules with more potent tubulin inhibitory activity.