Synthesis and reactivity of the imido analogues of the uranyl ion.

Research paper by Trevor W TW Hayton, James M JM Boncella, Brian L BL Scott, Enrique R ER Batista, P Jeffrey PJ Hay

Indexed on: 10 Aug '06Published on: 10 Aug '06Published in: Journal of the American Chemical Society


Addition of 1.5 equiv of I2 to a THF solution of UI3(THF)4, containing either 6 equiv of tBuNH2 or 2 equiv of RNH2 (R = Ph, 3,5-(CF3)2C6H3, 2,6-(iPr)2C6H3) and 4 equiv of NEt3, generates orange solutions containing U(NtBu)2I2(THF)2 (1) or U(NAr)2I2(THF)3 (Ar = Ph, 2; 3,5-(CF3)2C6H3, 3; 2,6-(iPr)2C6H3, 4), respectively, all of which can be isolated in good yields. Alternatively, 1 can be prepared by reaction of uranium metal with 3 equiv of I2 and 6 equiv of tBuNH2, also in good yield. Complexes 1-4 have been characterized by X-ray crystallography, and each of these complexes exhibits linear N-U-N linkages and short U-N bonds. Using density functional theory simulations of complexes 1 and 2, two triple bonds between the metal center and the nitrogen ligands were identified. Complexes 1 and 2 readily react with neutral Lewis bases such as pyridine or Ph3PO to form U(NR)2I2(L)2 (R = tBu, L = py, 5; Ph3PO, 7; R = Ph, L = py, 6; Ph3PO, 8), and with PMe3 to form U(NR)2I2(THF)(PMe3)2 (R = tBu, 9; Ph, 10). The solid-state molecular structures of 5, 7, and 9 have been determined by X-ray crystallography, and these complexes, like their parent compounds, exhibit linear N-U-N angles and short U-N bonds. Complexes 1 and 2 also react with AgOTf in CH2Cl2, forming U(NR)2(OTf)2(THF)3 (R = tBu, 11; Ph, 12) after recrystallization from THF. Crystals of 12 grown from CH2Cl2 were found to contain a dimer, [U(NPh)2(OTf)2(THF)2]2, a complex possessing bridging triflate groups.