Quantcast

Synergistic effect of pulsed electric fields and CocoanOX 12% on the inactivation kinetics of Bacillus cereus in a mixed beverage of liquid whole egg and skim milk.

Research paper by M C MC Pina-Pérez, A B AB Silva-Angulo, D D Rodrigo, A A Martínez-López

Indexed on: 24 Feb '09Published on: 24 Feb '09Published in: International Journal of Food Microbiology



Abstract

With a view to extending the shelf-life and enhancing the safety of liquid whole egg/skim milk (LWE-SM) mixed beverages, a study was conducted with Bacillus cereus vegetative cells inoculated in skim milk (SM) and LWE-SM beverages, with or without antimicrobial cocoa powder. The beverages were treated with Pulsed Electric Field (PEF) technology and then stored at 5 degrees C for 15 days. The kinetic results were modeled with the Bigelow model, Weibull distribution function, modified Gompertz equation, and Log-logistic models. Maximum inactivation registered a reduction of around 3 log cycles at 40 kV/cm, 360 micros, 20 degrees C in both the SM and LWE-SM beverages. By contrast, in the beverages supplemented with the aforementioned antimicrobial compound, higher inactivation levels were obtained under the same treatment conditions, reaching a 3.30 log(10) cycle reduction. The model affording the best fit for all four beverages was the four-parameter Log-logistic model. After 15 days of storage, the antimicrobial compound lowered Bacillus cereus survival rates in the samples supplemented with CocoanOX 12% by a 4 log cycle reduction, as compared to the untreated samples without CocoanOX 12%. This could indicate that the PEF-antimicrobial combination has a synergistic effect on the bacterial cells under study, increasing their sensitivity to subsequent refrigerated storage.