Quantcast

Symmetric Potentials of Gauged Supergravities in Diverse Dimensions and Coulomb Branch of Gauge Theories

Research paper by M. Cvetic, S. S. Gubser, H. Lu, C. N. Pope

Indexed on: 17 Dec '99Published on: 17 Dec '99Published in: High Energy Physics - Theory



Abstract

A class of conformally flat and asymptotically anti-de Sitter geometries involving profiles of scalar fields is studied from the point of view of gauged supergravity. The scalars involved in the solutions parameterise the SL(N,R)/SO(N) submanifold of the full scalar coset of the gauged supergravity, and are described by a symmetric potential with a universal form. These geometries descend via consistent truncation from distributions of D3-branes, M2-branes, or M5-branes in ten or eleven dimensions. We exhibit analogous solutions asymptotic to AdS_6 which descend from the D4-D8-brane system. We obtain the related six-dimensional theory by consistent reduction from massive type IIA supergravity. All our geometries correspond to states in the Coulomb branch of the dual conformal field theories. We analyze linear fluctuations of minimally coupled scalars and find both discrete and continuous spectra, but always bounded below.