Quantcast

Studies on chilling sensitivity of early stage zebrafish (Danio rerio) ovarian follicles.

Research paper by S S Tsai, D M DM Rawson, T T Zhang

Indexed on: 24 Feb '09Published on: 24 Feb '09Published in: Cryobiology



Abstract

Cryopreservation of fish gametes is of great importance in aquaculture, conservation and human genomic research. The creation of gamete cryobanks allows the storage of genetic material of targeted species for almost unlimited time periods. Cryopreservation has been successfully applied to fish sperm of many species, but there has been no success with fish embryos and oocytes. One of the obstacles to fish oocyte cryopreservation is their high chilling sensitivity and especially at subzero temperatures. Although studies on late stage oocyte cryopreservation has been carried out, there have been no reported studies on cryopreservation of early stage ovarian follicles. The aim of this study is to investigate the chilling sensitivity of early stage zebrafish ovarian follicles before developing protocols for their cryopreservation. Experiments were conducted with stage I (primary growth), stage II (cortical alveolus) and stage III (vetillogenesis) ovarian follicles, which were chilled in KCl buffer and L-15 medium for up to 144h at -1 degrees C in a low temperature bath. Ovarian follicles were also exposed to 2M methanol or 2M DMSO in L-15 medium for up to 168h at -1 and -5 degrees C, respectively. Control follicles were kept at 28 degrees C. Ovarian follicle viability was assessed using trypan blue staining. The results showed that stage I and II ovarian follicles are less sensitive to chilling than stage III follicles. These results were also confirmed following in vitro maturation of the chilled ovarian follicles. The results also showed that L-15 medium is more beneficial than KCl buffer for ovarian follicles at all stages. The presence of both methanol and DMSO reduced chilling sensitivity of ovarian follicles at all stages with methanol being the most effective. The study indicated that stage I and II follicles are less sensitive to chilling than stage III follicles, and that early stage zebrafish ovarian follicles may be better candidates for cryopreservation.