Quantcast

Structure and Electrochemical Activity of C60 Fullerite Films

Research paper by Yurii M. Solonin

Indexed on: 01 Nov '01Published on: 01 Nov '01Published in: Powder Metallurgy and Metal Ceramics



Abstract

Results are presented from structural and electrochemical researches on C60 films. The fullerite films were made by thermal vacuum evaporation and deposition on NaCl crystals. The substrate temperatures were 293-473 K. The examinations were made in a transmission electron microscope at 100 kV and by x-ray diffraction. Dark-field images were obtained from the individual fullerite particles and particularly from grains in continuous thin films, which showed stacking faults or twin boundaries. The numbers of these defects increase with the substrate temperature. The x-ray diffraction patterns of the fullerite films show extremely diffuse reflections together with a weak reflection around the FCC (111), which may be assigned to a hexagonal close packed HCP modification of fullerite. Rietveld's method was used in processing the x-ray patterns. The best fit between the experimental and theoretical diffraction lines was obtained with the following structure parameters: ratio of FCC phase (a = 1.4117 nm) and HCP phase (a = 0.9756 nm and c = 1.7084 nm) was 46/54 mass%. The electrochemical data indicate that a palladium-activated fullerite film shows prominent hysteresis, which confirms that certain hydride phases are formed at the surface of the C60 film.