Quantcast

Structural dynamics of myoglobin.

Research paper by M M Brunori, D D Bourgeois, B B Vallone

Indexed on: 25 Apr '08Published on: 25 Apr '08Published in: Methods in enzymology



Abstract

Protein structure is endowed with a complex dynamic nature, which rules function and controls activity. The experimental investigations that yield information on protein dynamics are carried out in solution; however, in most cases, the determination of protein structure is carried out by crystallography that relies on the diffraction properties of a large number of molecules, in approximately the same conformation, arranged in a three-dimensional lattice. Myoglobin, maybe the most thoroughly characterized protein, has allowed the formulation of general principles in the field of protein structure-function correlation and, since the late 1990s, it has been possible to obtain directly some insight into the complex dynamic behavior of myoglobin and other proteins by Laue diffraction. This chapter describes some of the technological features involved in obtaining reliable data by time-resolved Laue crystallography, with subnanosecond time resolution. A synopsis of the more significant findings obtained by laser photolysis of myoglobin-CO crystals is also presented, emphasizing the more general aspects of dynamics relevant to the complex energy landscape of a protein.