Stress Sensitivity of Seismic and Electric Rock Properties of the Upper Continental Crust at the KTB

Research paper by Axel Kaselow, Katharina Becker, Serge A. Shapiro

Indexed on: 01 Jun '06Published on: 01 Jun '06Published in: Pure and Applied Geophysics


We test the hypothesis that the general trend of P-wave and S-wave sonic log velocities and resistivity with depth in the pilot hole of the KTB site Germany, can be explained by the progressive closure of the compliant porosity with increasingly effective pressure. We introduce a quantity θc characterizing the stress sensitivity of the mentioned properties. An analysis of the downhole measurements showed that estimates of the quantitiy θc for seismic velocities and electrical formation factor of the in situ formation coincide. Moreover, this quantity is 3.5 to 4.5 times larger than the averaged stress sensitivity obtained from core samples. We conclude that the hypothesis mentioned above is consistent with both data sets. Moreover, since θc corresponds approximately to the inverse of the effective crack aspect ratio, larger in situ estimates of θc might reflect the influence of fractures and faults on the stress sensitivity of the crystalline formation in contrast to the stress sensitivity of the nearly intact core samples. Finally, because the stress sensitivity is directly related to the elastic nonlinearity we conclude that the elastic nonlinearity (i.e., deviation from linear stress-strain relationship i.e., Hooke's law) of the KTB rocks is significantly larger in situ than in the laboratory.